首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated genetic variation for resistance to insect herbivores and host plant quality. The effect of plant mating system, an important determinant of the distribution of genetic variation, on host plant characteristics has received almost no attention. This study used a controlled greenhouse experiment to examine the effect of self- and cross-pollination in Mimulus guttatus (Scrophulariaceae) on resistance to and host plant quality for the xylem-feeding spittlebug Philaenus spumarius (Homoptera: Cercopidae). Spittlebugs were found to have a negative effect on two important fitness components in M. guttatus, flower production and above ground biomass. One of two M. guttatus populations examined showed a significant interaction between the pollination and herbivore treatments. In this case, the detrimental effects of herbivores on biomass and flower production were much more pronounced in inbred (self) plants. The presence of spittlebug nymphs increased inbreeding depression by as much as three times. Pollination treatments also had significant effects on important components of herbivore fitness, but these effects were in opposite directions in our two host plant populations. Spittlebug nymphs maturing on self plants emerged as significantly larger adults in one of our host plant populations, indicating that inbreeding increased host plant quality. In our second host plant population, spittlebug nymphs took significantly longer to develop to adulthood on self plants, indicating that inbreeding decreased host plant quality. Taken together these results suggest that the degree of inbreeding in host plant populations can have important and perhaps complex effects on the dynamics of plant-herbivore interactions and on mating-system evolution in the host.  相似文献   

2.
We analyze evolution of individual flowering phenologies by combining an ecological model of pollinator behavior with a genetic model of inbreeding depression for plant viability. The flowering phenology of a plant genotype determines its expected daily floral display which, together with pollinator behavior, governs the population rate of geitonogamous selfing (fertilization among flowers on the same plant). Pollinators select plant phenologies in two ways: they are more likely to visit plants displaying more flowers per day, and they influence geitonogamous selfing and consequent inbreeding depression via their abundance, foraging behavior, and pollen carry‐over among flowers on a plant. Our model predicts two types of equilibria at stable intermediate selfing rates for a wide range of pollinator behaviors and pollen transfer parameters. Edge equilibria occur at maximal or minimal selfing rates and are constrained by pollinators. Internal equilibria occur between edge equilibria and are determined by a trade‐off between pollinator attraction to large floral displays and avoidance of inbreeding depression due to selfing. We conclude that unavoidable geitonogamous selfing generated by pollinator behavior can contribute to the common occurrence of stable mixed mating in plants.  相似文献   

3.
Background and Aims Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, ‘one-day’ flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating.Methods We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period.Key Results Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed.Conclusions Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging largely explains the occurrence of mixed mating in I. sinensis, and this mode of self-fertilization probably functions to promote reproductive assurance when pollinator service is limited by windy environmental conditions and competition from co-occurring flowering plants.  相似文献   

4.
Hypothetically, a species with both cleistogamous (CL) flowers and delayed selfing chasmogamous (CH) flowers should display high levels of reproductive assurance because, over time, obligate selfing by CL flowers should reduce inbreeding depression and delayed selfing in CH flowers should compensate for the absence of outcross pollen. We used pollinator-exclusion experiments to investigate reproductive assurance in the CH flowers of Polygala lewtonii, an herb with a mixed mating system. We followed CH flowers from bud-break to flower/fruit abscission to quantify fruit initiation and maturation and rates of floral development. We also evaluated the efficacy of the selfing mechanism, conducted pollinator watches to assess the likelihood of pollinator limitation, and performed regression analysis to determine the effect of flower position on fruit production. Pollinator exclusion significantly reduced fruit initiation and maturation. Investigation of floral development demonstrated that the selfing mechanism is largely dysfunctional in CH flowers, indicating the failure of reproductive assurance. Low observed rates of insect visitation appear to contradict high rates of CH fruit production in open-pollinated plants, particularly given the rarity of delayed selfing. In both treatments, flower position significantly affected fruit initiation, suggesting a role for resource limitation in both pollinator-excluded and open-pollinated flowers.  相似文献   

5.
A central question in plant evolutionary ecology is how mixed mating systems are maintained in the face of selection against self-pollination. Recently, attention has focused on the potential reproductive assurance (RA) benefit of selfing: the ability to produce seeds via autonomous selfing when the potential for outcrossing is reduced or absent. To date, there is little experimental support for this benefit under natural pollination conditions. In addition, the RA hypothesis has not been tested experimentally in a species displaying morphological variation for traits expected to influence the mating system, such as flower size, which affects both attractiveness to pollinators and ability to self autonomously. Here, we document significant among-population variation in flower size in Collinsia parviflora and show that pollinators preferred large flowers over small flowers in experimental arrays. The pollinator community varied among three study sites, and two small-flowered populations had lower pollinator visitation rates than one large-flowered population. We compared seed production between intact flowers (can self) and experimentally emasculated flowers (require a pollinator) on large- and small-flowered plants. As predicted by the RA hypothesis, small-flowered plants show a greater RA benefit of selfing than large-flowered plants; emasculated, small flowers produced very few seeds, relative to intact, small flowers or either emasculated or intact, large flowers. We also show that the RA benefit is pollination-context dependent, differing between small- and large-flowered test sites, likely due to a combination of pollinator discrimination against small flowers and differences between test sites in the pollinator community. This paper is the first experimental evidence showing a trait-dependent RA benefit of selfing under natural pollination conditions.  相似文献   

6.
Kennedy BF  Elle E 《Oecologia》2008,155(3):469-477
Autonomous selfing can provide reproductive assurance (RA) for flowering plants that are unattractive to pollinators or in environments that are pollen limited. Pollen limitation may result from the breakdown of once-continuous habitat into smaller, more isolated patches (habitat fragmentation) if fragmentation negatively impacts pollinator populations. Here we quantify the levels of pollen limitation and RA among large and small populations of Collinsia parviflora, a wildflower with inter-population variation in flower size. We found that none of the populations were pollen limited, as pollen-supplemented and intact flowers did not differ in seed production. There was a significant effect of flower size on RA; intact flowers (can self) produced significantly more seeds than emasculated flowers (require pollen delivery) in small-flowered plants but not large-flowered plants. Population size nested within flower size did not significantly affect RA, but there was a large difference between our two replicate populations for large-flowered, small populations and small-flowered, large populations that appears related to a more variable pollination environment under these conditions. In fact, levels of RA were strongly negatively correlated with rates of pollinator visitation, whereby infrequent visitation by pollinators yielded high levels of RA via autonomous selfing, but there was no benefit of autonomous selfing when visitation rates were high. These results suggest that autonomous selfing may be adaptive in fragmented habitats or other ecological circumstances that affect pollinator visitation rates.  相似文献   

7.
Recent works have shown that mixed mating systems often evolve despite strong inbreeding depression and reproductive assurance, which is one of the widely accepted explanations for the evolution of selfing. However, there have been few empirical studies on the relationship between mixed mating and reproductive assurance in perennial plants. In the herbaceous perennial, Kosteletzkya virginica, delayed selfing induced from context-dependent style curvature offers reproductive assurance, and adverse weather conditions significantly reduce pollinator visitation rates. In this study, our goals were (i) to experimentally evaluate pollinator failure rate, reproductive assurance, selfing rate and the relationships between them, and (ii) to measure inbreeding depression across multiple growth seasons. Results indicate that both population selfing rates and reproductive assurance are significantly and positively correlated with field estimates of pollinator failure rates, and there is a strong relationship between selfing rates and reproductive assurance. Inbreeding depression across multiple growth seasons ranged from 0.621 to 0.665, and there were no significant differences among different seasons. Our data demonstrates that a mixed mating system is beneficial because frequent pollinator failure has allowed reproductive assurance to evolve through delayed selfing which minimizes the risk of seed discounting and is still advantageous despite high inbreeding depression.  相似文献   

8.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

9.
Seed production in many plants is pollen limited, likely because of unpredictable variation in the pollinator environment. One way for plants to escape the consequences of pollinator variability is to evolve mating systems, such as autonomous selfing, that assure reproduction without relying on pollinators. We explore this hypothesis through the construction and analysis of heuristic models of plant population dynamics in seed- or site-limited populations. Our analysis suggests several important points: the familiar rule that inbreeding depression greater than 0.5 maintains outcrossing significantly underestimates the threshold required under pollen limited conditions with prior selfing; variability in the pollination environment erodes the ability of inbreeding depression to maintain outcrossing; and variable pollination environments can result in stable intermediate rates of prior selfing. The results reflect the importance of geometric mean fitness (which in a variable environment is less than the arithmetic mean) in the face of temporal variation.  相似文献   

10.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

11.
The ability of plants to respond to natural enemies might depend on the availability of genetic variation for the optimal phenotypic expression of defence. Selfing can affect the distribution of genetic variability of plant fitness, resistance and tolerance to herbivores and pathogens. The hypothesis of inbreeding depression influencing plant defence predicts that inbreeding would reduce resistance and tolerance to damage by natural enemies relative to outcrossing. In a field experiment entailing experimentally produced inbred and outcrossed progenies, we assessed the effects of one generation of selfing on Datura stramonium resistance and tolerance to three types of natural enemies, herbivores, weevils and a virus. We also examined the effect of damage on relative growth rate (RGR), flower, fruit, and seed production in inbred and outcrossed plants. Inbreeding significantly reduced plant defence to natural enemies with an increase of 4% in herbivore damage and 8% in viral infection. These results indicate inbreeding depression in total resistance. Herbivory increased 10% inbreeding depression in seed number, but viral damage caused inbred and outcrossed plants to have similar seed production. Inbreeding and outcrossing effects on fitness components were highly variable among families, implying that different types or numbers of recessive deleterious alleles segregate following inbreeding in D. stramonium. Although inbreeding did not equally alter all the interactions, our findings indicate that inbreeding reduced plant defence to herbivores and pathogens in D. stramonium.  相似文献   

12.
夏枯草交配系统对花特征和访花频率差异的影响 植物花特征和传粉者的访问次数与交配系统类型密切相关。唇形科植物夏枯草(Prunella vulgaris)存 在两种植株类型,分别为柱头伸出花冠和柱头在花冠内部的植株,而且两种植株的比例在不同种群中存在差异。本研究选择柱头伸出花冠外植株占绝大多数、柱头伸出花冠外植株占多数和柱头在花冠内部植株占多数的3个种群,通过比较每个种群中两种植株类型的开花物候、花形态特征、昆虫访问频率、自交能力、传粉者对结实的贡献以及近交衰退的水平,以检验花特征和传粉者访问次数与交配系统类型的关系。研究结果表明,与柱头在花冠内部的植株相比,柱头伸出花冠外的植株具有更大和更多的花,产生更多的花粉和花蜜,具有更高的访花频率,并主要通过异交产生种子。在种群水平,柱头伸出花冠外的植株占多数种群的访花频率显著高于柱头在花冠内部植株占多数的访花频率。柱头在花冠内部的植株比柱头伸出花冠外的植株具有更强的自动自交能力,在传粉者缺乏时为其提供了繁殖保障,但繁殖保障和异交率在不同种群中差异不显著,表明较低的昆虫访问能够满足夏枯草的授粉需求以产生种子,这可能与夏枯草较少的胚珠数量(每朵花仅有4个胚珠)有关。柱头在花冠内部植株的近交衰退水平低于柱头伸出花冠外植株的近交衰退水平,但两种植株类型的近交衰退水平均低于0.5,说明近交衰退不足以阻止该物种中自交的进化。综上所述,柱头在花冠内部的植株能够通过自交为夏枯草提供繁殖保障,而柱头伸出花冠外的植株能够利用昆虫传粉确保异交,表明混合交配系统在该物种中是一个稳定的状态。  相似文献   

13.
Isolation and small size of populations as a result of habitat destruction and fragmentation may negatively affect plant fitness through pollinator limitation and increased levels of inbreeding. To increase genetic variation in small populations of rare plants artificial gene flow has been suggested as a management tool. We investigated whether pollinator limitation and inbreeding depression could reduce fitness in Gentianella germanica, an endangered biennial of increasingly fragmented calcareous grasslands in Central Europe. We experimentally excluded pollinators and generated progenies by hand-pollinating flowers with pollen from different distances. G. germanica was highly selfing. Pollinator exclusion strongly reduced seed set, indicating that pollinator limitation could potentially reduce plant fitness. Germination rate as well as number of leaves and rosette size of progeny from 10-m crosses was higher than that of progeny from open pollinations, self-, 1-m, and interpopulation crosses. After 6 mo of growth differences in the number of surviving plants persisted, whereas differences in plant size did not. The results suggest that inbreeding depression may reduce plant performance in G. germanica. Outbreeding depression in the performance of progeny from interpopulation crosses indicates that caution is necessary in using artificial interpopulation gene flow as a management tool.  相似文献   

14.
The yellow-flowered monkshood Aconitum lycoctonum has variable degrees of inbreeding among populations, despite being primarily bee-pollinated. Here we examined the pollination ecology of A. lycoctonum . We investigated pollinator community and frequency in four populations at two altitudes over two years. We found that flowers were more often visited at low elevation than at high elevation. However, because flowers lived longer at high elevation than at low elevation, and plants at high elevation had more flowers than at low elevation, the overall chance of a plant being visited may be greater at high elevation. Breeding system experiments showed that at least some populations of A. lycoctonum were self-compatible and also were not completely protandrous. Thus selfing, especially by geitonogamous pollen, will be common if pollinators often visit several flowers within a plant, as we found to be true for the main pollinator (bumblebees) of A. lycoctonum . Although the stereotypical behavior of bees is to move upwards, 17% of the within-plant movements of the main pollinator ( Bombus gerstaeckeri ) were downwards, i.e. from a male-phased to a female-phased flower because the flowers open from the bottom to the top of the plant. Other pollinators of A. lycoctonum moved less often within plants. We conclude that in addition to differences in self-compatibility, differences in pollinator abundance and behavior could have led to variation in the realized mating system in different A. lycoctonum populations.  相似文献   

15.
In this study we investigate the composition of the potential honeyeater pollinator community, patterns of honeyeater visitation, pollination and the mating system in a range of population fragments for the bird-pollinated mixed mating system shrub Calothamnus quadrifidus R.Br. Specifically, we aimed to answer the following questions. For smaller and more isolated population fragments are honeyeater species lost from the pollinator community, patterns of visitation different, levels of pollination lower and rates of selfing, biparental inbreeding and correlated paternity higher. The composition of the honeyeater community was similar across population fragments and there was no relationship between the abundance of birds and population fragment size. Honeyeaters were most commonly observed visiting numerous inflorescences within single plants in all populations, but as population fragments became larger movements between plants were more commonly observed. Our observations of honeyeater visitation were generally consistent with our measurements of pollination and patterns in the mating system across population fragments. We found no significant relationship between population fragment size and levels of pollination. Mating system studies showed outcrossing rates (t m) comparable to those found in other bird-pollinated Myrtaceae, and ranged from 0.54 to 0.90 across populations. Outcrossing rates were not significantly correlated with log population size, but correlations of outcrossed paternity indicate a clear trend from low correlated paternity in larger populations to significantly higher correlated paternities in smaller populations. As a consequence mating in small populations will occur between much smaller groups of plants, and this may affect population fitness in subsequent generations.  相似文献   

16.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

17.
According to the "effective pollination" hypothesis, tall stature resulting from strong apical dominance attracts greater pollinator visitation, thus allowing larger pollen loads and/or greater outcrossing rates, which in turn produces more vigorous offspring with greater genotypic variability and/or less inbreeding depression. Components of this hypothesis were tested in Verbascum thapsus, which commonly grows unbranched to over 2 m tall with strong apical dominance suppressing all axillary meristems. A natural population survey indicated that plants with visiting pollinators were significantly taller than their nearest neighboring individuals not possessing a visiting pollinator. Plants in natural populations with excluded pollinators produced seeds via a delayed selfing mechanism. However, delayed selfing under pollinator exclusion resulted in only 75% of the seed set obtained with natural pollinators. Under natural pollination, emasculated flowers experienced a 50% reduction in pollen deposition by the time of flower closure but only a 5% reduction in seed set relative to intact flowers. Hence, taller plants attracted more pollinators and maximum seed set could not be achieved without pollinators. Comparison of seed set and seed mass in plants that were artificially selfed and artificially crossed (in both the greenhouse and in natural populations) indicated that plants were fully self-compatible with no evidence of early-acting inbreeding depression. However, this does not exclude the possibility that inbreeding depression is manifested in later life stages. The results suggest that V. thapsus has a mixed mating system with potential for reproductive assurance and various levels of outcrossing depending on variables affecting pollinator availability (e.g., population size).  相似文献   

18.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

19.
  • One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self‐compatibility, and especially autonomous self‐pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation.
  • In a hand‐pollination experiment with 46 meadow plants from the ?elezné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life‐history traits.
  • We found a relatively discrete distribution of the studied species into four groups. Fully and partially self‐incompatible species formed the largest group, followed by self‐compatible non‐selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system.
  • Spontaneous selfing ability and self‐incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self‐compatible species and thus shape the evolution of mating systems.
  相似文献   

20.
Despite the strong influence of pollination ecology on the evolution of selfing, we have little information on how distinct groups of insect pollinators influence outcrossing rate. However, differences in behavior between pollinator groups could easily influence how each group affects outcrossing rate. We examined the influence of distinct insect pollinator groups on outcrossing rate in the rocky mountain columbine, Aquilegia coerulea. The impact of population size, plant density, size of floral display, and herkogamy (spatial separation between anthers and stigmas) on outcrossing rate was also considered as these variables were previously found to affect outcrossing rate in some plant species. We quantified correlations between all independent variables and used simple and two-factor regressions to determine direct and indirect impact of each independent variable on outcrossing rate. Outcrossing rate increased significantly with hawkmoth abundance but not with the abundance of any of the other groups of floral visitors, which included bumblebees, solitary bees, syrphid flies, and muscidae. Outcrossing rate was also significantly affected by floral display size and together, hawkmoth abundance and floral display size explained 87% of the variation in outcrossing rate. None of the other independent variables directly affected the outcrossing rate. This is the first report of a significant impact of pollinator type on outcrossing rate. Hawkmoths did not visit fewer flowers per plant relative to other pollinator groups but preferred visiting female-phase flowers first on a plant. Both the behavior of pollinators and floral display size affected outcrossing rate via their impact on the level of geitonogamous (among flower) selfing. Given that geitonogamous selfing is never advantageous, the variation in outcrossing rate and maintenance of mixed mating systems in populations of A. coerulea may not require an adaptive explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号