首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Several primate models indicate that cytotoxic T lymphocyte-inducing vaccines may be unable to prevent human immunodeficiency virus infection but may have a long-term benefit in controlling viral replication and delaying disease progression. Here we show that analysis of the kinetics of antigen-specific CD8+ T-cell expansion suggests a delay in activation following infection that allows unimpeded early viral replication. Viral kinetics do not differ between controls and vaccinees during this delay phase. An increase in virus-specific CD8+ T-cell numbers around day 10 postinfection coincides with a slowing in viral replication in vaccinees and reduces peak viral loads by around 1 log. However, this response is too little too late to prevent establishment of persistent infection.  相似文献   

3.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

4.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

5.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

6.
The basis of chronic infection following exposure to hepatitis C virus (HCV) infection is unexplained. One factor may be the low frequency and immature phenotype of virus-specific CD8(+) T cells. The role of CD4(+)CD25(+) T regulatory (T(reg)) cells in priming and expanding virus-specific CD8(+) T cells was investigated. Twenty HLA-A2-positive patients with persistent HCV infection and 46 healthy controls were studied. Virus-specific CD8(+) T-cell proliferation and gamma interferon (IFN-gamma) frequency were analyzed with/without depletion of T(reg) cells, using peptides derived from HCV, Epstein-Barr virus (EBV), and cytomegalovirus (CMV). CD4(+)CD25(+) T(reg) cells inhibited anti-CD3/CD28 CD8(+) T-cell proliferation and perforin expression. Depletion of CD4(+)CD25(+) T(reg) cells from chronic HCV patients in vitro increased HCV and EBV peptide-driven expansion (P = 0.0005 and P = 0.002, respectively) and also the number of HCV- and EBV-specific IFN-gamma-expressing CD8(+) T cells. Although stimulated CD8(+) T cells expressed receptors for transforming growth factor beta and interleukin-10, the presence of antibody to transforming growth factor beta and interleukin-10 had no effect on the suppressive effect of CD4(+)CD25(+) regulatory T cells on CD8(+) T-cell proliferation. In conclusion, marked CD4(+)CD25(+) regulatory T-cell activity is present in patients with chronic HCV infection, which may contribute to weak HCV-specific CD8(+) T-cell responses and viral persistence.  相似文献   

7.
CD4+ CD25+ regulatory T cells have been shown to maintain peripheral tolerance against self and foreign antigens. In this study we analyzed the effect of circulating CD4+ CD25+ T cells on CD8+-T-cell responses of patients with chronic and resolved hepatitis B virus (HBV) infection. We demonstrated that circulating CD4+ CD25+ T cells modulate the function and expansion of HBV-specific CD8+ cells ex vivo in all patients, regardless of whether they have chronic or resolved HBV infection. The possible role of CD4+ CD25+ T cells in the pathogenesis of chronic HBV infection is not supported by these data. However, these results might have implications for optimizing future immunotherapeutic approaches to HBV treatment.  相似文献   

8.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

9.
The cellular immune response contributes to clearance of hepatitis C virus (HCV) and persists for decades after recovery from infection. The immunological basis for the inefficiency of the cellular immune response in chronically infected persons is not known. Here, we used four HLA-A2 tetramers, specific for two HCV core and two HCV NS3 epitopes, to investigate at the single-cell level effector function and phenotype of HCV-specific CD8+ T cells in 20 chronically infected and 12 long-term recovered patients. Overall, HCV-specific, tetramer+ T cells were more frequently found in PBMCs of chronically infected patients than in those of recovered patients. However, when compared with HCV-tetramer+ T cells of recovered patients, they displayed an impaired proliferative capacity. As a result of the impaired proliferative capacity, HCV-specific T cell lines derived from chronically infected patients displayed less peptide-specific cytotoxicity than those from recovered patients. In addition, proliferation and ex vivo IFN-gamma production of HCV-tetramer+ cells, but not influenza-virus-specific T cells, were defective in chronically infected patients and could not be restored by in vitro stimulation with peptide and IL-2. At least three distinct phenotypes of HCV-specific CD8+ T cells were identified and associated with certain functional characteristics. In addition, impairment of proliferative, cytokine, and cytotoxic effector functions of tetramer+ T cells in viremic patients was associated with weak ex vivo HCV-specific CD4+ T cell responses. Thus, the defective functions of HCV-specific CD8+ T cells might contribute to viral persistence in chronically infected patients, and knowledge on their reversibility may facilitate the development of immunotherapeutic vaccines.  相似文献   

10.
The low precursor frequency of individual virus-specific CD8(+) T cells in a naive host makes the early events of CD8(+) T cell activation, proliferation, and differentiation in response to viral infection a challenge to identify. We have therefore examined the response of naive CD8(+) T cells to pulmonary influenza virus infection with a murine adoptive transfer model using hemagglutinin-specific TCR transgenic CD8(+) T cells. Initial activation of CD8(+) T cells occurs during the first 3 days postinfection exclusively within the draining lymph nodes. Acquisition of CTL effector functions, including effector cytokine and granule-associated protease expression, occurs in the draining lymph nodes and differentially correlates with cell division. Division of activated CD8(+) T cells within the draining lymph nodes occurs in an asynchronous manner between days 3 and 4 postinfection. Despite the presence of Ag for several days within the draining lymph nodes, dividing T cells do not appear to maintain contact with residual Ag. After multiple cell divisions, CD8(+) T cells exit the draining lymph nodes and migrate to the infected lung. Activated CD8(+) T cells also disseminate throughout lymphoid tissue including the spleen and distal lymph nodes following their emigration from draining lymph nodes. These results demonstrate an important role for draining lymph nodes in orchestrating T cell responses during a local infection of a discrete organ to generate effector CD8(+) T cells capable of responding to infection and seeding peripheral lymphoid tissues.  相似文献   

11.

Background

Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation.

Methods

To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment.

Results

The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006). These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy). As plasma HIV levels fell with interferon therapy, this was correlated with a “paradoxical” increase in CD8+ T cell activation (p<0.001).

Conclusion

Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection.  相似文献   

12.
13.
Type I IFN (IFN-alphabeta), which is produced rapidly in response to infection, plays a key role in innate immunity and also acts as a stimulus for the adaptive immune response. We have investigated how IFN-alphabeta induces cross-priming, comparing CD8+ T cell responses generated against soluble protein Ags in the presence or absence of IFN-alphabeta. Injection of IFN-alpha was found to prolong the proliferation and expansion of Ag-specific CD8+ T cells, which was associated with marked up-regulation of IL-2 and IL-15 receptors on Ag-specific cells and expression of IL-15 in the draining lymph node. Surprisingly, neither IL-2 nor IL-15 was required for IFN-alpha-induced cross-priming. Conversely, expression of the IFN-alphabetaR by T cells was shown to be necessary for effective stimulation of the response by IFN-alpha. The finding that T cells represent direct targets of IFN-alphabeta-mediated stimulation reveals an additional mechanism by which the innate response to infection promotes adaptive immunity.  相似文献   

14.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

15.
Previous studies have suggested that coxsackievirus B (CVB) activates CD8+ T cells in vivo, but the extent of this activation and the antigen specificity of the CD8+ T cells remain uncertain. Furthermore, CVB-induced CD4+ T-cell responses have not been carefully investigated. Herein, we evaluate CD8+ and CD4+ T-cell responses both in a secondary lymphoid organ (spleen) and in peripheral tissues (heart and pancreas), using a recombinant CVB3 (rCVB3.6) that encodes well-characterized CD8+ and CD4+ T-cell epitopes. Despite reaching high levels in vivo, rCVB3.6 failed to trigger a marked expansion of CD8+ or CD4+ T cells, and T-cell activation was surprisingly limited. Furthermore, epitope-specific effector functions could not be detected using highly sensitive in vivo and ex vivo assays. Moreover, major histocompatibility complex (MHC) class I tetramer analysis indicated that our inability to detect CVB3-specific CD8+ T-cell responses could not be explained by the cells being dysfunctional. In contrast to naïve T cells, epitope-specific memory CD8+ and CD4+ T cells proliferated markedly, indicating that both of the rCVB3.6-encoded epitopes were presented by their respective MHC molecules in vivo. These data are consistent with the observation that several CVB3 proteins can limit the presentation of viral epitopes on the surface of infected cells and suggest that the level of MHC/peptide complex is sufficient to trigger memory but not naïve T cells. Finally, our findings have implications for the biological significance of cross-priming, a process thought by some to be important for the induction of antiviral CD8+ T-cell responses.Coxsackieviruses are members of the picornavirus family and enterovirus genus, which includes type A and B coxsackieviruses, polioviruses, echoviruses, and other unclassified enteroviruses. Although the majority of type B coxsackievirus (CVB) infections in humans are subclinical or cause relatively mild disease (including rash, myalgia, or upper respiratory complications), CVB are important human pathogens, and a substantial proportion of infections can lead to severe—even lethal—acute and chronic diseases. In particular, CVB is the most common infectious cause of myocarditis, which can lead to dilated cardiomyopathy and cardiac failure (38, 44, 45). CVB also targets cells of the central nervous system and the pancreas, frequently leading to aseptic meningitis and pancreatitis (7, 12, 33, 35, 40). Overall, CVB infection can cause considerable morbidity and mortality, particularly in newborns and in young or immunocompromised individuals (35, 52).The murine model of CVB3 infection is a valuable system for studying CVB pathogenesis and immunity, as mice infected with CVB develop diseases similar to those observed in humans (52, 53). Intraperitoneal inoculation of adult C57BL/6 mice with CVB3 results in systemic acute infection; viremia peaks on day 2 to 3 postinfection (p.i.), and infectious virus is cleared by 2 weeks p.i. (33, 34). Control of CVB3 infection depends on both cell-mediated and humoral components of the immune response. Agammaglobulinemic individuals are particularly susceptible to CVB3-associated encephalitis (15, 18), and mice lacking B cells develop a chronic infection and remain viremic for at least 2 months; viremia can be alleviated by the adoptive transfer of B cells from CVB3-immune wild-type mice (34). CD8+ T cells also play an important role in controlling virus replication. T cells are present in the inflammatory infiltrates associated with myocarditis and pancreatitis (17, 20, 41), and CD8+ T-cell depletion of CVB3-infected mice simultaneously increases viral titers and reduces myocarditis, suggesting that T-cell-mediated protection is associated with elevated immunopathology (17). This immunopathology can be uncoupled from antiviral efficacy; mice lacking perforin control cardiac infection just as well as wild-type mice but show markedly diminished myocarditis (14).Many—probably most—acute viral infections trigger extensive CD8+ T-cell activation and division; these responses can readily be detected directly ex vivo, without any need for extensive restimulation. The convincing evidence that CD8+ T cells can contribute to control of CVB3 in mice, together with the fact that CVB3 replicates to high titers in many mouse tissues, led us to surmise that CVB3—like most other viruses—would induce readily detectable CD8+ T-cell responses in mice. Indeed, early studies had identified cytolytic T-cell activity in CVB3-infected mice, although the precise antigen specificity of the cells was unknown (16, 21, 22). Subsequent elegant work showed that synthetic peptides representing CVB3 VP1 sequences could drive in vitro T-cell proliferation, but neither the phenotype of the proliferating T cells (CD4+ or CD8+) nor the precise epitope specificity was determined (19). Therefore, we undertook a preliminary analysis of epitope-specific CD8+ T-cell responses against CVB3; contrary to our expectations, we found that CVB3-induced epitope-specific CD8+ T-cell responses were difficult to detect (42). However, those studies were incomplete: they relied on ex vivo detection methods of rather limited sensitivity, and they were limited to cells from the spleen. Furthermore, those studies focused only on CD8+ T cells, and it is clear that regulation of antiviral CD8+ T cells differs from that of CD4+ T cells. Therefore, herein we have extended our previous analysis in five ways: first, we evaluate general T-cell activation in CVB3-infected mice; second, we use more sensitive in vivo approaches to detect epitope-specific T-cell responses; third, we investigate the possibility that the virus induces the expansion of dysfunctional T cells; fourth, we extend our analyses of CVB3 epitope-specific T-cell responses to major targets of infection, such as the heart, where CD8+ T cells are present in the virus-induced infiltrate; and, fifth, we investigate CD4+ T-cell responses induced by CVB3. Our studies employ a new recombinant CVB3 (rCVB3) that encodes both a CD8 and CD4 T-cell epitope derived from lymphocytic choriomeningitis virus (LCMV). Our data are not only relevant to understanding the T-cell responses induced by coxsackievirus in particular but also have broader implications for the mechanism(s) by which CD4+ and CD8+ T cells are induced by viruses in general.  相似文献   

16.
17.
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans and has been implicated in the pathogenesis of several human malignancies. Protective immunity against EBV is mediated by T cells, as indicated by an increased incidence of EBV-associated malignancies in immunocompromised patients, and by the successful treatment of EBV-associated post-transplant lymphoproliferative disease (PTLD) in transplant recipients by the infusion of polyclonal EBV-specific T cell lines. To implement this treatment modality as a conventional therapeutic option, and to extend this protocol to other EBV-associated diseases, generic and more direct approaches for the generation of EBV-specific T cell lines enriched in disease-relevant specificities need to be developed. To this aim, we studied the poorly defined EBV-specific CD4+ T cell response during acute and chronic infection.  相似文献   

18.
Latner DR  Kaech SM  Ahmed R 《Journal of virology》2004,78(20):10953-10959
Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.  相似文献   

19.
Ebola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood. Furthermore, we observed both lymphoblasts and apoptotic lymphocytes in spleen late in infection, suggesting that there is lymphocyte activation despite substantial bystander apoptosis. To test whether these activated lymphocytes were functional, we performed adoptive transfer studies. Whole splenocytes from moribund day 7 EBOV-infected animals protected naive animals from EBOV, but not Marburgvirus, challenge. In addition, we observed EBOV-specific CD8(+) T cell IFN-gamma responses in moribund day 7 EBOV-infected mice, and adoptive transfer of CD8(+) T cells alone from day 7 mice could confer protection to EBOV-challenged naive mice. Furthermore, CD8(+) cells from day 7, but not day 0, mice proliferated after transfer to infected recipients. Therefore, despite significant lymphocyte apoptosis, a functional and specific, albeit insufficient, adaptive immune response is made in lethal EBOV infection and is protective upon transfer to naive infected recipients. These findings should cause a change in the current view of the 'impaired' immune response to EBOV challenge and may help spark new therapeutic strategies to control lethal filovirus disease.  相似文献   

20.
Theiler's murine encephalomyelitis virus (TMEV) infection of the brain induces a virus-specific CD8(+) T-cell response in genetically resistant mice. The peak of the immune response to the virus occurs 7 days after infection, with an immunodominant CD8(+) T-cell response against a VP2-derived capsid peptide in the context of the D(b) molecule. The process of activation of antigen-specific T cells that migrate to the brain in the TMEV model has not been defined. The site of antigenic challenge in the TMEV model is directly into the brain parenchyma, a site that is considered immune privileged. We investigated the hypothesis that antiviral CD8(+) T-cell responses are initiated in situ upon intracranial inoculation with TMEV. To determine whether a brain parenchymal antigen-presenting cell is responsible for the activation of virus-specific CD8(+) T cells, we evaluated the CD8(+) T-cell response to the VP2 peptide in bone marrow chimeras and mutant mice lacking peripheral lymphoid organs. The generation of the anti-TMEV CD8(+) T-cell response in the brain requires priming by a bone marrow-derived antigen-presenting cell and the presence of peripheral lymphoid organs. Although our results show that activation of TMEV-specific CD8(+) T cells occurs in the peripheral lymphoid compartment, they do not exclude the possibility that the immune response to TMEV is initiated by a brain-resident, bone marrow-derived, antigen-presenting cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号