首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors.  相似文献   

2.
FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.  相似文献   

3.
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.  相似文献   

4.
Growth factor receptor tyrosine kinases (RTKs), such as the fibroblast growth factor receptor (FGFR), play a major role in how cells communicate with their environment. FGFR signaling is crucial for normal development, and its misregulation in humans has been linked to developmental abnormalities and cancer. The precise molecular mechanisms by which FGFRs transduce extracellular signals to effect specific biologic responses is an area of intense research. Genetic analyses in model organisms have played a central role in our evolving understanding of these signal transduction cascades. Genetic studies in the nematode C. elegans have contributed to our knowledge of FGFR signaling by identifying genes involved in FGFR signal transduction and linking their gene products together into signaling modules. This review will describe FGFR-mediated signal transduction in C. elegans and focus on how these studies have contributed to our understanding of how FGFRs orchestrate the assembly of intracellular signaling pathways.  相似文献   

5.
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.  相似文献   

6.
In recent years the study of fibroblast growth factor receptors (FGFRs) in normal development and human genetic disorders has increased our understanding of some complex cellular processes. At least fifteen genetic disorders result from mutations within FGFR genes including skeletal dysplasias such as Apert syndrome and achondroplasia. In vitro experiments and the generation of animal models indicate that these mutations result in activation of the receptors and that FGFRs act as negative regulators of bone growth. FGFRs also play a role in wound healing and cancer. In this article, we review the expression of FGFRs in human development, the phenotypes resulting from FGFR mutations, and recent data identifying pathways downstream of the activated receptors.  相似文献   

7.
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.  相似文献   

8.
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.  相似文献   

9.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

10.
A truncated form of the type 1 fibroblast growth factor receptor (FGFR1) lacking most of its cytoplasmic domain was tested for its ability to inhibit signal transduction by each of three different wild-type FGFRs (FGFR1, 2, and 3). When the truncated FGFR1 was expressed in Xenopus oocytes in excess of each wild-type FGFR, mobilization of intracellular calcium mediated by the wild-type FGFRs was completely blocked. The truncated FGFR did not inhibit signal transduction by the co-expressed platelet-derived growth factor beta-receptor. A form of truncated FGFR1 which lacked the first immunoglobulin-like domain also inhibited signal transduction by wild-type FGFRs. Truncated FGFR formed complexes with wild-type FGFR in the presence of basic FGF in intact cells. These observations were consistent with the hypothesis that the truncated FGFR interacted with wild-type FGFRs to form nonfunctional heterodimers, thus eliminating the signaling by the wild-type FGFRs. The observation that signaling by multiple types of FGFR can be blocked by a single type of truncated FGFR suggests that the different types of FGFR can interact with each other in ligand-mediated complexes. These findings provide a molecular basis for inhibiting the actions of FGFs in vivo.  相似文献   

11.
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration, and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder, and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.  相似文献   

12.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves aberrant development of the craniofacial skeleton. Craniosynostosis syndrome-linked FGFR mutations have been shown to be gain of function in terms of receptor activation and have been presumed to result in increased levels of FGF/FGFR signaling. Unfortunately, studies attempting to link expression of mutant FGFRs with changes in cellular phenotype have yielded conflicting results. In an effort to better understand the biochemical consequences of these mutations on receptor function, here we have investigated the effect of the FGFR2C278F mutation of Crouzon craniosynostosis syndrome on receptor trafficking, ubiquitination, degradation, and signaling. We find that FGFR2C278F exhibits diminished glycosylation, increased degradation, and limited cellular sublocalization in the osteoblastic cell line, MC3T3E1(C4). Additionally, we show that trafficking and autoactivation of wild type FGFR2 is glycosylation-dependent. Both FGFR2C278F and unglycosylated wild type FGFR2 signal through phospholipase Cgamma in a ligand-independent manner as well as exhibit dramatically increased binding to the adaptor protein, Frs2. These findings suggest that autoactive FGFR2 can signal from intracellular compartments. Based upon our results, we propose that the functional signaling of craniosynostosis mutant, autoactive receptors is limited in some cell types by protective cellular responses, such as increased trafficking to lysosomes and proteasomes for degradation.  相似文献   

13.
Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors.  相似文献   

14.
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.  相似文献   

15.
Heparan sulfate (HS) regulates the kinetics of fibroblast growth factor 2 (FGF2)-stimulated intracellular signaling and differentially activates cell proliferation of cells expressing different FGF receptors (FGFRs). Evidence suggests that HS interacts with both FGFs and FGFRs to form active ternary signaling complexes. Here we compare the interactions of two FGFRs with HS. We show that the ectodomains of FGFR1 IIIc and FGFR2 IIIc exhibit specific interactions with different characteristics for both heparin and porcine mucosal HS. These glycans are both known to activate FGF signaling via these receptors. FGFR2 interacts with a higher apparent affinity than FGFR1 despite both involving 6-O-, 2-O-, and N-sulfates. FGFR1 and FGFR2 bind heparin with mean association rate constants of 1.9 x 10(5) and 2.1 x 10(6) m(-1)s(-1), respectively, and dissociation rate constants of 1.2 x 10(-2) and 2.7 x 10(-2) s(-1), respectively. These produced calculated affinities of 63 and 13 nm, respectively. Hence, FGFR1 and FGFR2 bind to heparin chains with markedly different kinetics and affinities. We propose a mechanistic model where the kinetic parameters of the HS/FGFR interaction are a key element regulating the formation of ternary complexes and the resulting FGF signaling outcomes.  相似文献   

16.
Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4   总被引:4,自引:0,他引:4  
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.  相似文献   

17.
Existing literature demonstrates that fibroblast growth factor-2 (FGF-2) exerts opposing, contradictory biological effects on cartilage homeostasis in different species. In human articular cartilage, FGF-2 plays a catabolic and anti-anabolic role in cartilage homeostasis, driving homeostasis toward degeneration and osteoarthritis (OA). In murine joints, however, FGF-2 has been identified as an anabolic mediator as ablation of the FGF-2 gene demonstrated increased susceptibility to OA. There have been no previous studies specifically addressing species-specific differences in FGF-2-mediated biological effects. In this study, we provide a mechanistic understanding by which FGF-2 exerts contradictory biological effects in human versus murine tissues. Using human articular cartilage (ex vivo) and a medial meniscal destabilization (DMM) animal model (in vivo), species-specific expression patterns of FGFR receptors (FGFRs) are elucidated between human and murine articular cartilage. In the murine OA model followed by intra-articular injection of FGF-2, we further correlate FGFR profiles to changes in behavioral pain perception, proteoglycan content in articular cartilage, and production of inflammatory (CD11b) and angiogenic (VEGF) mediators in synovium lining cells. Our results suggest that the fundamental differences in cellular responses between human and murine tissues may be secondary to distinctive expression patterns of FGFRs that eventually determine biological outcomes in the presence of FGF-2. The complex interplay of FGFRs and the downstream signaling cascades induced by FGF-2 in human cartilage should add caution to the use of this particular growth factor for biological therapy in the future.  相似文献   

18.
Secreted from intestine, human fibroblast growth factor 19 (hFGF19) is an endocrine metabolic regulator that controls bile acid synthesis in the liver. Earlier studies have suggested that hFGF19 at 10-100 nM levels signals through FGF receptor 4 (FGFR4) in the presence of a co-receptor, betaKlotho, but its activity and receptor specificity at physiological concentrations (picomolar levels) remain unclear. Here we report that hFGF19 at picomolar levels require sulfated glycosaminoglycans (sGAGs), such as heparan sulfate, heparin, and chondroitin sulfates, for its signaling via human FGFR4 in the presence of human betaKlotho. Importantly, sGAGs isolated from liver are highly active in enhancing the picomolar hFGF19 signaling. At nanomolar levels, in contrast, hFGF19 activates all types of human FGFRs, i.e. FGFR1c, FGFR2c, FGFR3c, and FGFR4 in the co-presence of betaKlotho and heparin and activates FGFR4 even in the absence of betaKlotho. These results show that sGAGs play crucial roles in specific and sensitive hFGF19 signaling via FGF receptors and suggest that hepatic sGAGs are involved in the highly potent and specific signaling of picomolar hFGF19 through FGFR4 and betaKlotho. The results further suggest that hFGF19 at pathological concentrations may evoke aberrant signaling through various FGF receptors.  相似文献   

19.
The fibroblast growth factors (FGFs) exert their diverse (or pleiotropic) biological responses through the binding and activation of specific cell surface receptors (FGFRs). While FGFRs are known to initiate intracellular signaling through receptor tyrosine phosphorylation, the precise mechanisms by which the FGFRs regulate pleiotropic biological responses remain unclear. We now identify a new mechanism by which FGFR2 is able to regulate intracellular signaling and cellular responses. We show that FGFR2 is phosphorylated on serine 779 (S779) in response to FGF2. S779, which lies adjacent to the phospholipase Cgamma binding site at Y766, provides a docking site for the 14-3-3 phosphoserine-binding proteins and is essential for the full activation of the phosphatidylinositol 3-kinase and Ras/mitogen-activated protein kinase pathways. Furthermore, S779 signaling is essential for promoting cell survival and proliferation in both Ba/F3 cells and BALB/c 3T3 fibroblasts. This new mode of FGFR2 phosphoserine signaling via the 14-3-3 proteins may provide an increased repertoire of signaling outputs to allow the regulation of pleiotropic biological responses. In this regard, we have identified conserved putative phosphotyrosine/phosphoserine motifs in the cytoplasmic domains of diverse cell surface receptors, suggesting that they may perform important functional roles beyond the FGFRs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号