首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces.  相似文献   

2.
Khantwal CM  Swaan PW 《Biochemistry》2008,47(12):3606-3614
We report the involvement of transmembrane domain 4 (TM4) of hASBT in forming the putative translocation pathway, using cysteine-scanning mutagenesis in conjunction with solvent-accessibility studies using the membrane-impermeant, sulfhydryl-specific methanethiosulfonate reagents. We individually mutated each of the 21 amino acids in TM4 to cysteine on a fully functional, MTS-resistant C270A-hASBT template. The single-cysteine mutants were expressed in COS-1 cells, and their cell surface expression levels, transport activities [uptake of the prototypical hASBT substrate taurocholic acid (TCA)], and sensitivities to MTS exposure were determined. Only P161 lacked cell-surface expression. Overall, cysteine replacement was tolerated at charged and polar residues, except for mutants I160C, Y162C, I165C, and G179C (相似文献   

3.
Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln75, Phe76, Met79, Gly83, Leu86, Phe90, and Asp91 in hASBT function. Computational analysis indicated that Asp91 may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr134, Leu138, and Thr149) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln75, Met79, Thr82, and Leu86 from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.  相似文献   

4.
The Na+/H+ exchanger isoform 1 is an integral membrane protein that regulates intracellular pH. It extrudes 1 intracellular H+ in exchange for 1 extracellular Na+. It has 2 large domains, an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the critical transmembrane segment TM VII. Residues Leu 255, Leu 258, Glu 262, Leu 265, Asn 266, Asp 267, Val 269, Val 272, and Leu 273 were all mutated to cysteine residues in the cysteineless NHE1 isoform. Mutation of amino acids E262, N266, and D267 caused severe defects in activity and targeting of the intact full length protein. The balance of the active mutants were examined for sensitivity to the sulfhydryl reactive reagents, positively charged MTSET ((2- (trimethylammonium)ethyl)methanethiosulfonate) and negatively charged MTSES ((2-sulfonatoethyl)methanethiosulfonate). Leu 255 and Leu 258 were sensitive to MTSET but not to MTSES. The results suggest that these amino acids are pore-lining residues. We present a model of TM VII that shows that residues Leu 255, Leu 258, Glu 262, Asn 266, and Asp 267 lie near the same face of TM VII, lining the ion transduction pore.  相似文献   

5.
6.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

7.
Banerjee A  Swaan PW 《Biochemistry》2006,45(3):943-953
The membrane topology of the human apical sodium-dependent bile acid transporter (hASBT) remains unresolved. Whereas N-glycosylation analysis favors a 7 transmembrane (TM) model, membrane insertion scanning supports a 9TM topology. In order to resolve this controversy, we used dual label epitope insertion to systematically examine the topological framework of hASBT. Two distinct epitopes, hemagglutinin (HA) and FLAG, were individually inserted by inverted PCR mutagenesis at strategic positions along the hASBT sequence. Cell surface biotinylation and immunoblotting with epitope-specific and anti-hASBT antibodies confirmed expression and trafficking of the mutants to the plasma membrane. Confocal microscopy confirmed membrane localization of epitope-tagged hASBT in saponin-treated (permeabilized) and nonpermeabilized transfected COS-1 and MDCK cells. Tags at positions 116, 120, 186, 270, and 284 were accessible to the epitope antibodies in nonpermeabilized cells, indicative of the extracellular localization of loops 1 (99-130), 2 (180-191), and 3 (253-287). The corresponding positions in the 9TM model were predicted to be intracellular or membrane bound. Epitope mutants at residues 56, 92, 156, and 221 were only detected after treatment with saponin, indicating the intracellular localizations of loops 1 (50-73), 2 (150-160), 3 (215-227) as predicted by a 7TM model. Our results also confirm the exofacial and cytosolic localization of N- and C-terminal tails, respectively. With the exception of constructs inserted at position 120, epitope mutants displayed active, sodium-dependent taurocholate uptake. Consequently, our study strongly supports a 7TM topology for hASBT and refutes the previously proposed 9TM model.  相似文献   

8.
Bile acids are efficiently absorbed from the intestinal lumen via the ileal apical sodium-dependent bile acid transporter (ASBT). ASBT function is essential for maintenance of cholesterol homeostasis in the body. The molecular mechanisms of the direct effect of cholesterol on human ASBT function and expression are not entirely understood. The present studies were undertaken to establish a suitable in vitro experimental model to study human ASBT function and its regulation by cholesterol. Luminal membrane bile acid transport was evaluated by the measurement of sodium-dependent 3H-labeled taurocholic acid (3H-TC) uptake in human intestinal Caco-2 cell monolayers. The relative abundance of human ASBT (hASBT) mRNA was determined by real-time PCR. Transient transfection and luciferase assay techniques were employed to assess hASBT promoter activity. Caco-2 cell line was found to represent a suitable model to study hASBT function and regulation. 25-Hydroxycholesterol (25-HCH; 2.5 microg/ml for 24 h) significantly inhibited Na(+)-dependent 3H-TC uptake in Caco-2 cells. This inhibition was associated with a 50% decrease in the V(max) of the transporter with no significant changes in the apparent K(m). The inhibition in hASBT activity was associated with reduction in both the level of hASBT mRNA and its promoter activity. Our data show the inhibition of hASBT function and expression by 25-HCH in Caco-2 cells. These data provide novel evidence for the direct regulation of human ASBT function by cholesterol and suggest that this phenomenon may play a central role in cholesterol homeostasis.  相似文献   

9.
Zhang X  Qu S 《PloS one》2012,7(1):e30961

Background

Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter which is a key element in the termination of the synaptic actions of glutamate. It serves to keep the extracellular glutamate concentration below neurotoxic level. However the functional significance and the change of accessibility of residues in transmembrane domain (TM) 5 of the EAAT1 are not clear yet.

Methodology/Principal Findings

We used cysteine mutagenesis with treatments with membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] to investigate the change of accessibility of TM5. Cysteine mutants were introduced from position 291 to 300 of the cysteine-less version of EAAT1. We checked the activity and kinetic parameters of the mutants before and after treatments with MTSET, furthermore we analyzed the effect of the substrate and blocker on the inhibition of the cysteine mutants by MTSET. Inhibition of transport by MTSET was observed in the mutants L296C, I297C and G299C, while the activity of K300C got higher after exposure to MTSET. Vmax of L296C and G299C got lower while that of K300C got higher after treated by MTSET. The L296C, G299C, K300C single cysteine mutants showed a conformationally sensitive reactivity pattern. The sensitivity of L296C to MTSET was potentiated by glutamate and TBOA,but the sensitivity of G299C to MTSET was potentiated only by TBOA.

Conclusions/Significance

All these facts suggest that the accessibility of some positions of the external part of the TM5 is conformationally sensitive during the transport cycle. Our results indicate that some residues of TM5 take part in the transport pathway during the transport cycle.  相似文献   

10.
The Na+/dicarboxylate co-transporter, NaDC-1, from the kidney and small intestine, transports three sodium ions together with one divalent anion substrate, such as succinate2-. A previous study (Pajor, A. M. (2001) J. Biol. Chem. 276, 29961-29968), identified four amino acids, Ser-478, Ala-480, Ala-481, and Thr-482, near the extracellular end of transmembrane helix (TM) 9 that are likely to form part of the permeation pathway of the transporter. All four cysteine-substituted mutants were sensitive to inhibition by the membrane-impermeant reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate (MTSET) and protected by substrate. In the present study, we continued the cysteine scan through extracellular loop 5 and TM10, from Thr-483 to Val-528. Most cysteine substitutions were well tolerated, although cysteine mutations of some residues, particularly within the TM, produced proteins that were not expressed on the plasma membrane. Six residues in the extracellular loop (Thr-483, Thr-484, Leu-485, Leu-487, Ile-489, and Met-493) were sensitive to chemical labeling by MTSET, depending on the conformational state of the protein. Transport inhibition by MTSET could be prevented by substrate regardless of temperature, suggesting that the likely mechanism of substrate protection is steric hindrance rather than large-scale conformational changes associated with translocation. We conclude that extracellular loop 5 in NaDC-1 appears to have a functional role, and it is likely to be located in or near the substrate translocation pore in the protein. Conformational changes in the protein affect the accessibility of the residues in extracellular loop 5 and provide further evidence of large-scale changes in the structure of NaDC-1 during the transport cycle.  相似文献   

11.
Banerjee A  Ray A  Chang C  Swaan PW 《Biochemistry》2005,44(24):8908-8917
The residues involved in substrate interaction of the human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) remain undefined. Biochemical modification of conserved cysteine residues has suggested their direct involvement in hASBT function. In the present study, we developed novel methanethiosulfonyl (MTS)-bile salt derivatives and describe their reactivity toward hASBT and its mutants. Endogenous Cys residues were subjected to Ala/Thr scanning mutagenesis and subsequent exposure to affinity inactivators. We show that C51A/T, C105A/T, C144A, and C255A/T are loss-of-function mutations. Additionally, C74A/T cell surface expression was abolished suggesting a role in protein folding and/or trafficking. C270A remained largely unaffected in the presence of 1.0 mM polar and charged MTS reagents (MTSEA, MTSES, and MTSET) and retained function similar to wt-hASBT control. However, in the presence of synthetic cholyl- and chenodeoxycholyl-MTS analogues, C270A displayed a significant decrease in K(T) and J(max). Our findings demonstrate that Cys270 is a highly accessible extracellular residue susceptible to thiol modification in its native form that remains largely unaffected upon mutation to Ala. Consequently, C270A provides an ideal scaffold for cysteine scanning mutagenesis studies. Furthermore, the substantial decrease in ligand affinity and maximal transport capacity of C270A suggest that C270 may potentially impact, although not critically, a putative substrate binding domain of hASBT. Overall, bile acid-MTS conjugates can serve as novel and powerful tools to probe the role of endogenous as well as engineered Cys residues and, ultimately, aid in defining their role in the bile acid binding region(s) of hASBT.  相似文献   

12.
The Na+/H+ exchanger isoform 1 is a ubiquitously expressed integral membrane protein. It resides on the plasma membrane of cells and regulates intracellular pH in mammals by extruding an intracellular H+ in exchange for one extracellular Na+. We characterized structural and functional aspects of the transmembrane segment (TM) VI (residues 227–249) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM VI was mutated to cysteine in the background of the cysteineless NHE1 protein, and the sensitivity to water-soluble sulfhydryl-reactive compounds (2-(trimethylammonium)ethyl)methanethiosulfonate (MTSET) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) was determined for those residues with significant activity remaining. Three residues were essentially inactive when mutated to Cys: Asp238, Pro239, and Glu247. Of the remaining residues, proteins with the mutations N227C, I233C, and L243C were strongly inhibited by MTSET, whereas amino acids Phe230, Gly231, Ala236, Val237, Ala244, Val245, and Glu248 were partially inhibited by MTSET. MTSES did not affect the activity of the mutant NHE1 proteins. The structure of a peptide representing TM VI was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. TM VI contains two helical regions oriented at an approximate right angle to each other (residues 229–236 and 239–250) surrounding a central unwound region. This structure bears a resemblance to TM IV of the Escherichia coli protein NhaA. The results demonstrate that TM VI of NHE1 is a discontinuous pore-lining helix with residues Asn227, Ile233, and Leu243 lining the translocation pore.  相似文献   

13.
Winkler HH  Daugherty RM  Audia JP 《Biochemistry》2003,42(43):12562-12569
The contribution of transmembrane region VIII of the Rickettsia prowazekii ATP/ADP translocase to the structure of the water-filled channel through which ATP is transported was evaluated from the accessibility of three hydrophilic, thiol reactive, methanethiosulfonate reagents to a library of 21 single-cysteine substitution mutants expressed in Escherichia coli. A negatively charged reagent (MTSES) and two positively charged reagents (MTSET and MTSEA) were used. Mutants Q323C and G327C did not tolerate cysteine substitution and were almost completely deficient in ATP transport. The remaining mutants exhibited 25-226% of the cysteine-less parent's transport activity. Five patterns of inhibition of ATP transport by the MTS reagents were observed. (i) ATP transport was not inhibited by any of the three MTS reagents in mutants Q321C, F324C, A332C, and L335C and only marginally in F333C. (ii) Transport activity of mutants F322C, Q326C, and A330C was markedly inhibited by all three reagents. (iii) ATP transport was inhibited by MTSEA in only the largest group of mutants (M334C, I336C, G337C, S338C, N339C, I340C, and I341C). (iv) Transport activity was inhibited by MTSET and MTSEA, whereas high concentrations of MTSES were required to inhibit mutants W328C, V329C, and I331C. However, mutant W328C could be inhibited by MTSES in the presence of sub-K(m) concentrations of the substrate. (v) ATP transport by mutant Y325C was unaffected by MTSEA, but inhibited approximately 50% by MTSET and MTSES. Transport of ATP protected mutants (F322C, W328C, V329C, A330C, and I331C) from MTS inhibition. Mutants in the half of TM VIII that is closest to the cytoplasm were not inhibited well by MTSES or MTSET in either whole cells or inside-out vesicles. The results indicate that TM VIII makes a major contribution to the structure of the aqueous translocation pathway, that the accessibility to impermeant thiol reagents is influenced (blocked or stimulated) by substrate, and that there is great variation in accessibility to MTS reagents along the length of TM VIII.  相似文献   

14.
The Na(+)/dicarboxylate co-transporter, NaDC-1, couples the transport of sodium and Krebs cycle intermediates, such as succinate and citrate. Previous studies identified two functionally important amino acids, Glu-475 and Cys-476, located in transmembrane domain (TMD) 9 of NaDC-1. In the present study, each amino acid in TMD-9 was mutated to cysteine, one at a time, and the accessibility of the membrane-impermeant reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) to the replacement cysteines was determined. Cysteine substitution was tolerated at all but five of the sites: the A461C mutant was not present at the plasma membrane, whereas the F473C, T474C, E475C, and N479C mutants were inactive proteins located on the plasma membrane. Cysteine substitution of four residues found near the extracellular surface of TMD-9 (Ser-478, Ala-480, Ala-481, and Thr-482) resulted in proteins that were sensitive to inhibition by MTSET. The accessibility of MTSET to the four substituted cysteines was highest in the presence of the transported cations, sodium or lithium, and low in choline. The four mutants also exhibited substrate protection of MTSET accessibility. The MTSET accessibility to S478C, A481C, and A480C was independent of voltage. In contrast, T482C was more accessible to MTSET in choline buffer at negative holding potentials, but there was no effect of voltage in sodium buffer. In conclusion, TMD-9 may be involved in transducing conformational changes between the cation-binding sites and the substrate-binding site in NaDC-1, and it may also form part of the translocation pathway through the transporter.  相似文献   

15.
Citric acid cycle intermediates, including succinate and citrate, are absorbed across the apical membrane by the NaDC1 Na+/dicarboxylate cotransporter located in the kidney and small intestine. The secondary structure model of NaDC1 contains 11 transmembrane helices (TM). TM7 was shown previously to contain determinants of citrate affinity, and Arg-349 at the extracellular end of the helix is required for transport. The present study involved cysteine scanning mutagenesis of 26 amino acids in TM7 and the associated loops. All of the mutants were well expressed on the plasma membrane, but many had low or no transport activity: 6 were inactive and 7 had activity less than 25% of the parental. Three of the mutants had notable changes in functional properties. F336C had increased transport activity due to an increased Vmax for succinate. The conserved residue F339C had very low transport activity and a change in substrate selectivity. G356C in the putative extracellular loop was the only cysteine mutant that was affected by the membrane-impermeant cysteine reagent, MTSET. However, direct labeling of G356C with MTSEA-biotin gave a weak signal, indicating that this residue is not readily accessible to more bulky reagents. The results suggest that the amino acids of TM7 are functionally important because their replacement by cysteine had large effects on transport activity. However, most of TM7 does not appear to be accessible to the extracellular fluid and is likely to be an outer helix in contact with the lipid bilayer.  相似文献   

16.
Loo TW  Bartlett MC  Clarke DM 《Biochemistry》2004,43(38):12081-12089
P-Glycoprotein (P-gp) is an ATP-dependent drug pump that transports a broad range of compounds out of the cell. Cross-linking studies have shown that the drug-binding pocket is at the interface between the transmembrane (TM) domains and can simultaneously bind two different drug substrates. Here, we determined whether cysteine residues within the drug-binding pocket were accessible to the aqueous medium. Cysteine mutants were tested for their reactivity with the charged thiol-reactive compounds sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) and [2-(trimethylammonium)ethyl)]methanethiosulfonate (MTSET). Residue Ile-306(TM5) is close to the verapamil-binding site. It was changed to cysteine, reacted with MTSES or MTSET, and assayed for verapamil-stimulated ATPase activity. Reaction of mutant I306C(TM5) with either compound reduced its affinity for verapamil. We confirmed that the reduced affinity for verapamil was indeed due to introduction of a charge at position 306 by demonstrating that similar effects were observed when Ile-306 was replaced with arginine or glutamic acid. Mutant I306R showed a 50-fold reduction in affinity for verapamil and very little change in the affinity for rhodamine B or colchicine. MTSES or MTSET modification also affected the cross-linking pattern between pairs of cysteines in the drug-binding pocket. For example, both MTSES and MTSET inhibited cross-linking between I306C(TM5) and I868C(TM10). Inhibition was enhanced by ATP hydrolysis. By contrast, cross-linking of cysteine residues located outside the drug-binding pocket (such as G300C(TM5)/F770C(TM8)) was not affected by MTSES or MTSET. These results indicate that the drug-binding pocket is accessible to water.  相似文献   

17.
18.
CXCR1, a classic GPCR that binds IL-8, plays a key role in neutrophil activation and migration by activating phospholipase C (PLC)β through Gα(15) and Gα(i) which generates diacylglycerol and inositol phosphates (IPs). In this study, two conserved amino acid residues of CXCR1 on the transmembrane domain (TM) 3 and TM6, Leu128(3.43) (L128) and Val247(6.40) (V247), respectively, were selectively substituted with other amino acids to investigate the role of these conserved residues in CXCR1 activation. Although two selective mutants on Leu128, Leu128Ala (L128A) and Leu128Arg (L128R), demonstrated high binding affinity to IL-8, they were not capable of coupling to G proteins and consequently lost the functional response of the receptors. By contrast, among the four mutants at residue Val247 (TM6.40), replacing Val247 with Ala (V247A) and Asn (V247N) led to constitutive activation of mutant receptors when cotransfected with Gα(15). The V247N mutant also constitutively activated the Gα(i) protein. These results indicate that L128 on TM3.43 is involved in G protein coupling and receptor activation but is unimportant for ligand binding. On the other hand, V247 on TM6.40 plays a critical role in maintaining the receptor in the inactive state, and the substitution of V247 impaired the receptor constraint and stabilized an active conformation. Functionally, there was an increase in chemotaxis in response to IL-8 in cells expressing V247A and V247N. Our findings indicate that Leu128(3.43) and Val247(6.40) are critical for G protein coupling and activation of signaling effectors, providing a valuable insight into the mechanism of CXCR1 activation.  相似文献   

19.
Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu(204) and Pro(205) abolished transport activity, whereas substitutions at Ile(192), Pro(196), Gln(200), and Gly(201) resulted in inhibition of activity that ranged from approximately 35 to approximately 80%. Cysteine substitutions at Leu(188), Ser(191), and Leu(199) moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu(188) conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters.  相似文献   

20.
The coupling of agonist-activated heptahelical receptors to their cognate G proteins is often dependent on the amino-terminal region of the third intracellular loop. Like many G protein-coupled receptors, the gonadotropin-releasing hormone (GnRH) receptor contains an apolar amino acid in this region at a constant distance from conserved Pro and Tyr/Asn residues in the fifth transmembrane domain (TM V). An analysis of the role of this conserved residue (Leu(237)) in GnRH receptor function revealed that the binding affinities of the L237I and L237V mutant receptors were unchanged, but their abilities to mediate GnRH-induced inositol phosphate signaling, G protein coupling, and agonist-induced internalization were significantly impaired. Receptor expression at the cell surface was reduced by replacement of Leu(237) with Val, and abolished by replacement with Ala, Arg, or Asp residues. These results are consistent with molecular modeling of the TM V and VI regions of the GnRH receptor, which predicts that Leu(237) is caged by several apolar amino acids (Ile(233), Ile(234), and Val(240) in TM V, and Leu(262), Leu(265), and Val(269) in TM VI) to form a tight hydrophobic cluster. These findings indicate that the conserved apolar residue (Leu(237)) in the third intracellular loop is an important determinant of GnRH receptor expression and activation, and possibly that of other G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号