首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.  相似文献   

2.
During germinal center (GC) reactions, follicular dendritic cells are believed to select memory B lymphocytes by switching off apoptosis in the successfully binding B cells. The cellular signals involved in this process are largely unknown. Here, we show that GC B lymphocytes have a long isoform of the cellular homologue of the viral Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein (cFLIP(L)), which is capable of inhibiting death receptor-induced caspase activation. In isolated GC B cells, cFLIP(L) decays rapidly even without Fas ligation, and this results in activation of caspase activity and apoptosis. Contact with follicular dendritic cells prevents cFLIP(L) degradation and blocks all signs of apoptosis, even in the presence of anti-Fas ABS: cFLIP(L) expression is sustained by CD40 ligation as well, suggesting that at least at some stage of the GC reaction activated T cells may help selected B cells to leave the follicular dendritic cell network without becoming apoptotic.  相似文献   

3.
The expansion of CD8(+) T cells in response to Ag can be characterized as either dependent or independent of CD4(+) T cells. The factors that influence this dichotomy are poorly understood but may be dependent upon the degree of inflammation associated with the Ag. Using dendritic cells derived from MHC class II-deficient mice to avoid interaction with CD4(+) T cells in vivo, we have compared the immunogenicity of peptide-pulsed dendritic cells stimulated with molecules associated with infection to those stimulated via CD40. In the absence of CD4(+) T cell help, the expansion of primary CD8(+) T cells after immunization with TNF-alpha- or poly(I:C)-stimulated dendritic cells was minimal. In comparison, LPS- or CpG-stimulated dendritic cells elicited substantial primary CD8(+) T cell responses, though not to the same magnitude generated by immunization with CD40L-stimulated dendritic cells. Remarkably, mice immunized with any stimulated dendritic cell population generated fully functional recall CD8(+) T cells without the aid of CD4(+) T cell help. The observed hierarchy of immunogenicity was closely correlated with the expression of CD70 (CD27L) on the stimulated dendritic cells, and Ab-mediated blockade of CD70 substantially prevented the CD4(+) T cell-independent expansion of primary CD8(+) T cells. These results indicate that the expression of CD70 on dendritic cells is an important determinant for helper-dependence of primary CD8(+) T cell expansion and provide an explanation for the ability of a variety of pathogens to stimulate primary CD8(+) T cell responses in the absence of CD4(+) T cells.  相似文献   

4.
During primary varicella-zoster virus (VZV) infection, it is presumed that virus is transmitted from mucosal sites to regional lymph nodes, where T cells become infected. The cell type responsible for VZV transport from the mucosa to the lymph nodes has not been defined. In this study, we assessed the susceptibility of human monocyte-derived dendritic cells to infection with VZV. Dendritic cells were inoculated with the VZV strain Schenke and assessed by flow cytometry for VZV and dendritic cell (CD1a) antigen expression. In five replicate experiments, 34.4% +/- 6.6% (mean +/- SEM) of CD1a(+) cells were also VZV antigen positive. Dendritic cells were also shown to be susceptible to VZV infection by the detection of immediate-early (IE62), early (ORF29), and late (gC) gene products in CD1a(+) dendritic cells. Infectious virus was recovered from infected dendritic cells, and cell-to-cell contact was required for transmission of virus to permissive fibroblasts. VZV-infected dendritic cells showed no significant decrease in cell viability or evidence of apoptosis and did not exhibit altered cell surface levels of major histocompatibility complex (MHC) class I, MHC class II, CD86, CD40, or CD1a. Significantly, when autologous T lymphocytes were incubated with VZV-infected dendritic cells, VZV antigens were readily detected in CD3(+) T lymphocytes and infectious virus was recovered from these cells. These data provide the first evidence that dendritic cells are permissive to VZV and that dendritic cell infection can lead to transmission of virus to T lymphocytes. These findings have implications for our understanding of how virus may be disseminated during primary VZV infection.  相似文献   

5.
Aiming to combine the flexibility of Brucella lumazine synthase (BLS) to adapt different protein domains in a decameric structure and the capacity of BLS and flagellin to enhance the immunogenicity of peptides that are linked to their structure, we generated a chimeric protein (BLS‐FliC131) by fusing flagellin from Salmonella in the N‐termini of BLS. The obtained protein was recognized by anti‐flagellin and anti‐BLS antibodies, keeping the oligomerization capacity of BLS, without affecting the folding of the monomeric protein components determined by circular dichroism. Furthermore, the thermal stability of each fusion partner is conserved, indicating that the interactions that participate in its folding are not affected by the genetic fusion. Besides, either in vitro or in vivo using TLR5‐deficient animals we could determine that BLS‐FliC131 retains the capacity of triggering TLR5. The humoral response against BLS elicited by BLS‐FliC131 was stronger than the one elicited by equimolar amounts of BLS + FliC. Since BLS scaffold allows the generation of hetero‐decameric structures, we expect that flagellin oligomerization on this protein scaffold will generate a new vaccine platform with enhanced capacity to activate immune responses.  相似文献   

6.
The present study shows that Langerhans cells can be differentiated from Interdigitating cells at the light microscopic level. Superficial lymph nodes and skin taken from necropsies and the lymph nodes of dermatopathic lymphadenopathy (DPL) were used for this experiment. Sections of lymph node and skin were embedded using the acetone, methyl benzoate and xylene (AMeX) method and dendritic cells were immunostained with anti S-100 protein antibody (S-100, and OKT-6 (CD1a) using the restaining method. Langerhans cells in the skin were positive for both CD1a and S-100. Dendritic cells positive for both CD1a and S-100, and dendritic cells positive for S-100, but not for CD1a were observed in superficial lymph nodes. In normal superficial lymph nodes, there were more interdigitating cells than Langerhans cells. The majority of the dendritic cells in the DPL were Langerhans cells. We conclude that the S-100 and CD1a positive cells are Langerhans cells, and the S-100 positive-CD1a negative cells are interdigitating cells.  相似文献   

7.
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes.  相似文献   

8.
Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.  相似文献   

9.
Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein. It is possible to insert foreign peptides or proteins at its ten-amino acid termini. These chimeras elicit systemic and oral immunity without adjuvants, which are commonly needed in the formulation of subunit-based vaccines. Here, we show that BLS induces the cross presentation of a covalently attached peptide OVA257–264 and a specific cytotoxic response to this peptide in the absence of adjuvants. Unlike other subunit-based vaccines, this chimera induces rapid activation of CTLs and a specific cytotoxic response, making this polymeric protein an ideal antigen carrier for vaccine development. Adoptive transfer of transgenic OT-I T cells revealed efficient cross presentation of BLS-OVA257–264 in vivo. BLS-OVA257–264 immunization induced the proliferation of OVA257–264-specific CD8+ lymphocytes and also increased the percentage of OVA257–264-specific CD8+ cells expressing the early activation marker CD69; after 5 days, the percentage of OVA257–264-specific CD8+ cells expressing high levels of CD44 increased. This cell subpopulation showed decreased expression of IL-7Rα, indicating that BLS-OVA257–264 induced the generation of CD8+ effector cells. BLS-OVA257–264 was cross presented in vitro independently of the presence of a functional TLR4 in the DCs. Finally, we show that immunization of wild type mice with the chimera BLS-OVA257–264 without adjuvants induced a strong OVA257–264-specific effector cytotoxic response. This cytotoxicity is dependent on TLR4 as is not induced in mice lacking a functional receptor. These data show that TLR4 signaling is necesary for the induction of a cytotoxic response but not for antigen cross presentation.  相似文献   

10.
The present study shows that Langerhans cells can be differentiated from Interdigitating cells at the light microscopic level. Superficial lymph nodes and skin taken from necropsies and the lymph nodes of dermatopathic lymphadenopathy (DPL) were used for this experiment. Sections of lymph node and skin were embedded using the acetone, methyl benzoate and xylene (AMeX) method and dendritic cells were immunostained with anti S-100 protein antibody (S-100, and OKT-6 (CD1a) using the restaining method. Langerhans cells in the skin were positive for both CD1a and S-100. Dendritic cells positive for both CD1a and S-100, and dendritic cells positive for S-100, but not for CD1a were observed in superficial lymph nodes. In normal superficial lymph nodes, there were more interdigitating cells than Langerhans cells. The majority of the dendritic cells in the DPL were Langerhans cells. We conclude that the S-100 and CD1a positive cells are Langerhans cells, and the S-100 positive-CD1a negative cells are interdigitating cells.  相似文献   

11.
Macrophages and dendritic cells are involved in the immune response to Mycobacterium tuberculosis (Mtb). Such a response, although extensively studied using animal models and cells from human blood, has not been characterized in cells from pulmonary hilar lymph nodes (PHLN). We characterized populations of myeloid APC from PHLN and determined their expression of CCR2, CCR5, CCR7, CD40, CD54, CD80, and CD86 as well as the cytokine/chemokine microenvironment before and after purified protein derivative (PPD) and mannosilated lipoarabinomannan (ManLAM) stimulation. Results show that there are at least three APC populations in PHLN, defined as CD14highHLA-DRlow/-, CD14dimHLA-DRdim, and CD14-HLA-DRhigh/dendritic cells (DC), with the largest number represented by CD14dimHLA-DRdim cells (where dim indicates intermediate levels). CD14-HLA-DRhigh/DC expressed higher levels of costimulatory molecules and lower levels of CCR2 and CCR5, but all cell populations showed similar CCR7 levels. PPD and ManLAM specifically down-regulated CCR2 expression but not that of CCR5 and CCR7, and such down-regulation was observed on all APC populations. Mtb Ag did not affect the expression of costimulatory molecules. PPD but not ManLAM specifically induced MCP-1/CCL2 production, which was likely associated with the induction of IFN-gamma because this cytokine was highly induced by PPD. We characterized, for the first time, different APC from human PHLN and show that Mtb Ag exert fine and specific regulation of molecules closely associated with the immune response to Mtb infection. Because knowledge of this response in secondary lymphoid tissues is still poorly understood in humans, such studies are necessary and important for a better understanding of lymphoid cell microenvironment and migrating capacities and their role in the immunopathogenesis of tuberculosis.  相似文献   

12.
Activation of naive CD4 T cells by dendritic cells requires the sequential interaction of many TCR molecules with peptide-class II complexes of the appropriate specificity. Such interaction results in morphological transformation of class II MHC-containing endosomal compartments. In this study, we analyze the requirements for long tubular endosomal structures that polarize toward T cell contact sites using dendritic cells from I-A(b) class II -enhanced green fluorescent protein knock-in mice and I-A(b)-restricted CD4 T cells specific for OVA. Clustering of membrane proteins and ligation of T cell adhesion molecules LFA-1 and CD2 are involved in induction of endosomal tubulation. Activation of T cells increases their ability to induce class II-enhanced green fluorescent protein-positive tubules in dendritic cells, in part through up-regulation of CD40 ligand. Remarkably, and in stark contrast with the result obtained with dendritic cells loaded with intact OVA, OVA peptide added to dendritic cells failed to evoke T cell-polarized endosomal tubulation even though both conditions allowed T cell stimulation. These results suggest the existence of microdomains on the membrane of dendritic cells that allow Ag-specific T cells to evoke tubulation in the dendritic cell.  相似文献   

13.
In order to track hematopoetic cells of all lineages unambiguously at all stages of development, we have developed C57BL/6 mice that express a transgene coding for green fluorescent protein (GFP) under control of the human ubiquitin C promoter. These mice, called UBI-GFP/BL6, express GFP in all tissues examined, with high levels of GFP expression observed in hematopoetic cells. UBI-GFP/BL6 mice are unique in that B cells, T cells, and dendritic cells have distinct levels of GFP fluorescence. In cell transfer experiments, leukocytes from UBI-GFP/BL6 mice are readily identified by FACS or fluorescence microscopy. We demonstrate that transplanted UBI-GFP/BL6 dendritic cells are easily identified in secondary lymphoid tissues. Direct interactions between individual dendritic cells and multiple na?ve CD8+ T cells are observed in lymph nodes within 12 h of cell transfer and require loading of the dendritic cells with the appropriate peptide antigen. Dendritic cells undergo specific morphologic changes following interactions with antigen-specific T cells.  相似文献   

14.
Glucocorticoids affect human dendritic cell differentiation and maturation.   总被引:20,自引:0,他引:20  
Because dendritic cells (DC) play a major role in the initiation of T cell-mediated immunity, we studied the effects of glucocorticoids, well-known inhibitors of the immune and inflammatory response, on the differentiation and maturation of human DC. DC were differentiated from human monocytes by culture with GM-CSF and IL-4 for 7 days with and without dexamethasone (Dex). Cells treated with Dex (10-8 M) (Dex-DC) developed a characteristic dendritic morphology; however, membrane phenotype analysis demonstrated that they were not fully differentiated. Dex-DC expressed low levels of CD1a and, unlike untreated cells, high levels of CD14 and CD16. Molecules involved in Ag presentation (CD40, CD86, CD54) were also impaired. In contrast, molecules involved in Ag uptake (mannose receptor, CD32) and cell adhesion (CD11/CD18, CD54) were up-regulated. After exposure to TNF-alpha or CD40 ligand, Dex-DC expressed lower levels of CD83 and CD86 than untreated cells. Dex-DC showed a higher endocytic activity, a lower APC function, and a lower capacity to secrete cytokines than untreated cells. Overall, these results indicate that DC differentiated in the presence of Dex are at a more immature stage. Moreover, Dex also partially blocked terminal maturation of already differentiated DC. In conclusion, our data suggest that glucocorticoids may act at the very first step of the immune response by modulating DC differentiation, maturation, and function.  相似文献   

15.
CD82 and CD9 are tetraspanin membrane proteins that can function as suppressors of tumor metastasis. Expression of CD9 and CD82 in transfected cells strongly suppresses β-catenin–mediated Wnt signaling activity and induces a significant decrease in β-catenin protein levels. Inhibition of Wnt/β-catenin signaling is independent of glycogen synthase kinase-3β and of the proteasome- and lysosome-mediated protein degradation pathways. CD82 and CD9 expression induces β-catenin export via exosomes, which is blocked by a sphingomyelinase inhibitor, GW4869. CD82 fails to induce exosome release of β-catenin in cells that express low levels of E-cadherin. Exosome release from dendritic cells generated from CD9 knockout mice is reduced compared with that from wild-type dendritic cells. These results suggest that CD82 and CD9 down-regulate the Wnt signaling pathway through the exosomal discharge of β-catenin. Thus, exosomal packaging and release of cytosolic proteins can modulate the activity of cellular signaling pathways.  相似文献   

16.
Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact.  相似文献   

17.
High mobility group box 1 (HMGB1) is an abundant and conserved nuclear protein that is released by necrotic cells and acts in the extracellular environment as a primary proinflammatory signal. In this study we show that human dendritic cells, which are specialized in Ag presentation to T cells, actively release their own HMGB1 into the extracellular milieu upon activation. This secreted HMGB1 is necessary for the up-regulation of CD80, CD83, and CD86 surface markers of human dendritic cells and for IL-12 production. The HMGB1 secreted by dendritic cells is also required for the clonal expansion, survival, and functional polarization of naive T cells. Using neutralizing Abs and receptor for advanced glycation end product-deficient (RAGE(-/-)) cells, we demonstrate that RAGE is required for the effect of HMGB1 on dendritic cells. HMGB1/RAGE interaction results in downstream activation of MAPKs and NF-kappaB. The use of an ancient signal of necrosis, HMGB1, by dendritic cells to sustain their own maturation and for activation of T lymphocytes represents a profitable evolutionary mechanism.  相似文献   

18.
Germinal center dendritic cells (GCDCs) have been identified as CD11c(+) CD4(+) CD3(-) cells located in GCs with the ability of inducing marked proliferation of allogenic T cells. Using immunofluorescence techniques, we have observed that this CD11c(+) CD4(+) CD3(-) immunophenotype identified GCDCs but also a subset of extrafollicular DCs. By flow cytometry, we were able to discriminate the GCDCs (CD11c(high) CD4(high) lin(-)) from the other tonsil DCs. By immunofluorescence and flow cytometry, we found that dendritic cells of germinal centers express more intracellular adhesion molecule-1 (ICAM-1) (CD54) than extrafollicular dendritic cells. Proliferation of peripheral blood mononuclear cells (PBMCs) induced by coculture with purified CD11c(+) CD4(+) CD3(-) DCs was reduced by addition of blocking anti-CD54 antibodies. In summary, distinct levels of ICAM-1 expression allow the distinction between GCDCs and extrafollicular DCs, and cellular interactions mediated by CD54 are likely to play a role in the capacity of GCDC to stimulate allogenic PBMC proliferation.  相似文献   

19.
Ex vivo generated monocyte-derived dendritic cell (moDC)-vaccines have long been touted as promising immunotherapeutic agents for cancer treatment, although the response rate generally remains low. The reasons for this are still unclear and confounded by the diversity in manufacturing protocols that may affect moDC function. Preclinical studies have shown that the stimulatory function of dendritic cells can be improved by engaging invariant NKT cells in vivo through the presentation of the glycolipid alpha-galactosylceramide via CD1d. However, expression of CD1d on moDC has been shown to be negatively correlated with expression of CD1a, which in turn has been suggested to be a surrogate marker for IL-12 secreting type-1 polarized moDC, the preferred functional characteristics for cancer vaccines. Here we challenge this notion by showing that plasma-derived lipids drive functional levels of CD1d expression, while CD1a expression can vary considerably in these cells without being correlated with a loss of polarization or immunogenicity.  相似文献   

20.
Tumors evade immune surveillance despite the frequent expression of tumor-associated Ags (TAA). Tumor cells escape recognition by CD8(+) T cells through several mechanisms, including down-regulation of MHC class I molecules and associated Ag-processing machinery. However, although it is well accepted that optimal anti-tumor immune responses require tumor-reactive CD4(+) T cells, few studies have addressed how tumor cells evade CD4(+) T cell recognition. In this study, we show that a common TAA, GA733-2, and its murine orthologue, mouse epithelial glycoprotein (mEGP), function in blocking MHC class II-restricted Ag presentation by dendritic cells. GA733-2 is a common TAA that is expressed normally at low levels by some epithelial tissues and a subset of dendritic cells, but at high levels on colon, breast, lung, and some nonepithelial tumors. We show that ectopic expression of mEGP or GA733-2, respectively, in dendritic cells derived from murine bone marrow or human monocytes results in a dose-dependent inability to stimulate proliferation of Ag-specific or alloreactive CD4(+) T cells. Dendritic cells exposed to cell debris from tumors expressing mEGP are similarly compromised. Furthermore, mice immunized with dendritic cells expressing mEGP from a recombinant adenovirus vector exhibited a muted anti-adenovirus immune response. The inhibitory effect of mEGP was not due to down-regulation of functional MHC class II molecules or active suppression of T cells, and did not extend to T cell responses to superantigen. These results demonstrate a novel mechanism by which tumors may evade CD4(+) T cell-dependent immune responses through expression of a TAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号