首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In HEK293 cells, transfected with the Ca2+ channel protein TRPV6, Ca2+ influx is increased and TRPV6 is tyrosine phosphorylated following addition of the tyrosine phosphatase inhibitor N,N-dimethyl-hydroxamido hydroxovanadate to cells. This effect of DMHV is enhanced by co-transfection of cells with the tyrosine kinase Src and the tyrosine phosphatase 1B. It is abolished when cells had been treated with PP1, an inhibitor of Src family tyrosine kinases. PTP1B interacts with the N-terminal domain of TRPV6 within a region of amino acids 1-191 as shown by co-immunoprecipitation, bimolecular fluorescence complementation and the yeast 2-hybrid system. Point mutation of both tyrosines 161 and 162 in the TRPV6 protein abolishes the DMHV-effect on Ca2+ influx and tyrosine phosphorylation by Src. Single mutations of Y161 or Y162 shows that each of both tyrosines alone is sufficient for the DMHV-effect. We conclude that phosphorylation/dephosphorylation of tyrosines in position 161 and 162 is essential for regulation of Ca2+ influx through TRPV6 Ca2+ channels in HEK293 cells.  相似文献   

2.
Chronic hypoxia causes pulmonary hypertension with vascular remodeling, increase in vascular tone, and altered reactivity to agonists. These changes involve alterations in multiple Ca(2+) pathways in pulmonary arterial smooth muscle cells (PASMCs). We have previously shown that vanilloid (TRPV)- and melastatin-related transient receptor potential (TRPM) channels are expressed in pulmonary arteries (PAs). Here we found that TRPV4 was the only member of the TRPV and TRPM subfamilies upregulated in PAs of chronic hypoxic rats. The increase in TRPV4 expression occurred within 1 day of hypoxia exposure, indicative of an early hypoxic response. TRPV4 in PASMCs were found to be mechanosensitive. Osmo-mechanical stress imposed by hypotonic solution activated Ca(2+) transients; they were inhibited by TRPV4 specific short interfering RNA, the TRPV blocker ruthenium red, and the cytochrome P450 epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide. Consistent with TRPV4 upregulation, the Ca(2+) response induced by the TRPV4 agonist 4α-phorbol 12,13-didecanoate and hypotonicity was potentiated in hypoxic PASMCs. Moreover, a significant myogenic tone, sensitive to ruthenium red, was observed in pressurized endothelium denuded small PAs of hypoxic but not normoxic rats. The elevated basal intracellular Ca(2+) concentration in hypoxic PASMCs was also reduced by ruthenium red. In extension of these results, the development of pulmonary hypertension, right heart hypertrophy, and vascular remodeling was significantly delayed and suppressed in hypoxic trpv4(-/-) mice. These results suggest the novel concept that TRPV4 serves as a signal pathway crucial for the development of hypoxia-induced pulmonary hypertension. Its upregulation may provide a pathogenic feed-forward mechanism that promotes pulmonary hypertension via facilitated Ca(2+) influx, subsequently enhanced myogenic tone and vascular remodeling.  相似文献   

3.
4.
Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.  相似文献   

5.
Transient Receptor Potential (TRP) proteins are non-selective cation channels performing diverse cellular functions. TRPV1 and TRPV4, two calcium-permeable channels of the vanilloid subfamily of TRP proteins, are activated by various physical and chemical stimuli, including noxious heat and mechanical stress, respectively. These channels are also required for exaggerated sensation of painful stimuli, condition referred to as hyperalgesia, which is frequently associated with inflammation. Phosphorylation of TRPV1, involving Protein Kinase C (PKC) and Protein Kinase A (PKA), appears to be the predominant mechanism for channel sensitization and development of heat hyperalgesia. PKC and PKA pathways have also been implicated in the sensitization of TRPV4, but the respective phosphorylation sites remain unknown. Using mass spectrometry, we report now that TRPV4 is phosphorylated on serine 824 by the PKC-activating phorbol 12-myristate 13-acetate. This phosphorylation is prevented by a PKC inhibitor, confirming the involvement of PKC. Ser824, located in the carboxy-terminal cytosolic tail of TRPV4, is also phosphorylated after activation of the PKA pathway by forskolin, albeit less potently. Substitution of Ser824 with aspartic acid, mimicking phosphorylation at this site, increased TRPV4-mediated calcium influx in resting and in stimulated cells, underlining the importance of this residue in TRPV4 regulation. Thus PKC, and possibly PKA, phosphorylate TRPV4 at Ser824 leading to the enhancement of TRPV4 channel function. Our findings suggest an important role of this phosphorylation in TRPV4 sensitization and the development of hyperalgesia.  相似文献   

6.
Many transient receptor potential (TRP) channels are activated or blocked by various compounds found in plants; two prominent examples include the activation of TRPV1 channels by capsaicin and the activation of TRPM8 channels by menthol. We sought to identify additional plant compounds that are active on other types of TRP channels. We screened a library of extracts from 50 Chinese herbal plants using a calcium-imaging assay to find compounds active on TRPV3 and TRPV4 channels. An extract from the plant Andrographis paniculata potently activated TRPV4 channels. The extract was fractionated further, and the active compound was identified as bisandrographolide A (BAA). We used purified compound to characterize the activity of BAA on certain TRPV channel subtypes. Although BAA activated TRPV4 channels with an EC(50) of 790-950 nm, it did not activate or block activation of TRPV1, TRPV2, or TRPV3 channels. BAA activated a large TRPV4-like current in immortalized mouse keratinocytes (308 cells) that have been shown to express TRPV4 protein endogenously. This compound also activated TRPV4 currents in cell-free outside-out patches from HEK293T cells overexpressing TRPV4 cDNA, suggesting that BAA can activate the channel in a membrane-delimited manner. Another related compound, andrographolide, found in abundance in the plant Andrographis was unable to activate or block activation of TRPV4 channels. These experiments show that BAA activates TRPV4 channels, and we discuss the possibility that activation of TRPV4 by BAA could play a role in some of the effects of Andrographis extract described in traditional medicine.  相似文献   

7.
Activation of the non-selective cation channel TRPV4 by mechanical and osmotic stimuli requires the involvement of phospholipase A2 and the subsequent production of the arachidonic acid metabolites, epoxieicosatrienoic acids (EET). Previous studies have shown that inositol trisphosphate (IP3) sensitizes TRPV4 to mechanical, osmotic, and direct EET stimulation. We now search for the IP3 receptor-binding site on TRPV4 and its relevance to IP3-mediated sensitization. Three putative sites involved in protein-protein interactions were evaluated: a proline-rich domain (PRD), a calmodulin (CaM)-binding site, and the last four amino acids (DAPL) that show a PDZ-binding motif-like. TRPV4-DeltaCaM-(Delta812-831) channels preserved activation by hypotonicity, 4alpha-phorbol 12,13-didecanoate, and EET but lost their physical interaction with IP3 receptor 3 and IP3-mediated sensitization. Deletion of a PDZ-binding motif-like (TRPV4-DeltaDAPL) did not affect channel activity or IP3-mediated sensitization, whereas TRPV4-DeltaPRD-(Delta132-144) resulted in loss of channel function despite correct trafficking. We conclude that IP3-mediated sensitization requires IP3 receptor binding to a TRPV4 C-terminal domain that overlaps with a previously described calmodulin-binding site.  相似文献   

8.
Most Ca2+-permeable ion channels are inhibited by increases in the intracellular Ca2+ concentration ([Ca2+]i), thus preventing potentially deleterious rises in [Ca2+]i. In this study, we demonstrate that currents through the osmo-, heat- and phorbol ester-sensitive, Ca2+-permeable nonselective cation channel TRPV4 are potentiated by intracellular Ca2+. Spontaneous TRPV4 currents and currents stimulated by hypotonic solutions or phorbol esters were reduced strongly at all potentials in the absence of extracellular Ca2+. The other permeant divalent cations Ba2+ and Sr2+ were less effective than Ca2+ in supporting channel activity. An intracellular site of Ca2+ action was supported by the parallel decrease in spontaneous currents and [Ca2+]i on removal of extracellular Ca2+ and the ability of Ca2+ release from intracellular stores to restore TRPV4 activity in the absence of extracellular Ca2+. During TRPV4 activation by hypotonic solutions or phorbol esters, Ca2+ entry through the channel increased the rate and extent of channel activation. Currents were also potentiated by ionomycin in the presence of extracellular Ca2+. Ca2+-dependent potentiation of TRPV4 was often followed by inhibition. By mutagenesis, we localized the structural determinant of Ca2+-dependent potentiation to an intracellular, C-terminal calmodulin binding domain. This domain binds calmodulin in a Ca2+-dependent manner. TRPV4 mutants that did not bind calmodulin lacked Ca2+-dependent potentiation. We conclude that TRPV4 activity is tightly controlled by intracellular Ca2+. Ca2+ entry increases both the rate and extent of channel activation by a calmodulin-dependent mechanism. Excessive increases in [Ca2+]i via TRPV4 are prevented by a Ca2+-dependent negative feedback mechanism.  相似文献   

9.
10.
TRPV4 is a cation channel that responds to a variety of stimuli including mechanical forces, temperature, and ligand binding. We set out to identify TRPV4-interacting proteins by performing yeast two-hybrid screens, and we isolated with the avian TRPV4 amino terminus the chicken orthologues of mammalian PACSINs 1 and 3. The PACSINs are a protein family consisting of three members that have been implicated in synaptic vesicular membrane trafficking and regulation of dynamin-mediated endocytotic processes. In biochemical interaction assays we found that all three murine PACSIN isoforms can bind to the amino terminus of rodent TRPV4. No member of the PACSIN protein family was able to biochemically interact with TRPV1 and TRPV2. Co-expression of PACSIN 3, but not PACSINs 1 and 2, shifted the ratio of plasma membrane-associated versus cytosolic TRPV4 toward an apparent increase of plasma membrane-associated TRPV4 protein. A similar shift was also observable when we blocked dynamin-mediated endocytotic processes, suggesting that PACSIN 3 specifically affects the endocytosis of TRPV4, thereby modulating the subcellular localization of the ion channel. Mutational analysis shows that the interaction of the two proteins requires both a TRPV4-specific proline-rich domain upstream of the ankyrin repeats of the channel and the carboxyl-terminal Src homology 3 domain of PACSIN 3. Such a functional interaction could be important in cell types that show distribution of both proteins to the same subcellular regions such as renal tubule cells where the proteins are associated with the luminal plasma membrane.  相似文献   

11.
Molecular determinants of permeation through the cation channel TRPV4   总被引:8,自引:0,他引:8  
We have studied the molecular determinants of ion permeation through the TRPV4 channel (VRL-2, TRP12, VR-OAC, and OTRPC4). TRPV4 is characterized by both inward and outward rectification, voltage-dependent block by Ruthenium Red, a moderate selectivity for divalent versus monovalent cations, and an Eisenman IV permeability sequence. We identify two aspartate residues, Asp(672) and Asp(682), as important determinants of the Ca(2+) sensitivity of the TRPV4 pore. Neutralization of either aspartate to alanine caused a moderate reduction of the relative permeability for divalent cations and of the degree of outward rectification. Neutralizing both aspartates simultaneously caused a much stronger reduction of Ca(2+) permeability and channel rectification and additionally altered the permeability order for monovalent cations toward Eisenman sequence II or I. Moreover, neutralizing Asp(682) but not Asp(672) strongly reduces the affinity of the channel for Ruthenium Red. Mutations to Met(680), which is located at the center of a putative selectivity filter, strongly reduced whole cell current amplitude and impaired Ca(2+) permeation. In contrast, neutralizing the only positively charged residue in the putative pore region, Lys(675), had no obvious effects on the properties of the TRPV4 channel pore. Our findings delineate the pore region of TRPV4 and give a first insight into the possible architecture of its permeation pathway.  相似文献   

12.
TRPV4 calcium entry channel: a paradigm for gating diversity   总被引:1,自引:0,他引:1  
The vanilloid receptor-1 (VR1, now TRPV1) was the founding member of a subgroup of cation channels within the TRP family. The TRPV subgroup contains six mammalian members, which all function as Ca2+ entry channels gated by a variety of physical and chemical stimuli. TRPV4, which displays 45% sequence identity with TRPV1, is characterized by a surprising gating promiscuity: it is activated by hypotonic cell swelling, heat, synthetic 4alpha-phorbols, and several endogenous substances including arachidonic acid (AA), the endocannabinoids anandamide and 2-AG, and cytochrome P-450 metabolites of AA, such as epoxyeicosatrienoic acids. This review summarizes data on TRPV4 as a paradigm of gating diversity in this subfamily of Ca2+ entry channels.  相似文献   

13.
Synaptoporin, a novel putative channel protein of synaptic vesicles   总被引:10,自引:0,他引:10  
  相似文献   

14.
The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis.  相似文献   

15.
TRPV ion channels transduce a range of temperature stimuli. We proposed that analysis of the protein-protein interactions made by TRPV2 might give insight into the key issues surrounding this channel. These issues include the potential functional significance of TRPV2 in non-sensory tissues, the molecules involved in transducing its activation signal(s) and the mechanism by which its trafficking to the cell surface is regulated. Here we describe the interaction of TRPV2 channel with the RGA gene product. RGA is a four-transmembrane domain, intracellularly localized protein. RGA associates with TRPV2 in a rat mast cell line that is a native context for both proteins. The interaction between TRPV2 and RGA is transient and occurs intracellularly. RGA does not accompany TRPV2 to the cell surface. Formation of the TRPV2/RGA complex is dependent upon a cellular glycosylation event, suggesting that RGA may play a chaperone or targeting role for TRPV2 during the maturation of the ion channel protein. These data record a novel protein-protein interaction for TRPV2 and provide a foundation for future study of the potential regulatory contribution of RGA to TRPV2 function.  相似文献   

16.
17.
Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3   总被引:2,自引:0,他引:2  
TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.  相似文献   

18.
ComFA is a membrane protein required for the uptake of transforming DNA following its binding to the Bacillus subtilis competent-cell surface. ComFA, which resembles members of the DEAD family of ATP-driven helicases, contains sequences similar to those found in many ATP-binding proteins and thought to represent the ATP-binding sites of these proteins. We have suggested that ComFA may function as a DNA translocase and/or helicase, using the energy of ATP hydrolysis to mediate the uptake of DNA. As a partial test of this hypothesis, we have introduced mutations into highly conserved glycyl and lysyl residues of the putative ATP-binding site, located, respectively, at positions 151 and 152, and determined the effects of these alterations on in vivo function. A substitution of the conserved lysyl by a glutamyl residue (K152E) and a double G151R-K152N mutation each resulted in a nearly 1,000-fold decrease in transformability, equivalent to that observed in a ComFA null mutant. A K152N mutation caused a partial loss-of-function phenotype. These effects were manifested at the level of DNA uptake; no marked effects on the final levels of DNA binding were noted. When either the K152E mutant allele or the G151R-K152N double mutant allele was combined in single copy with wild-type comFA, a dominant negative phenotype expressed on the level of DNA uptake was observed, suggesting that ComFA acts in a complex with other proteins, with additional molecules of ComFA, or with both.  相似文献   

19.
C House  P J Robinson  B E Kemp 《FEBS letters》1989,249(2):243-247
A 29-residue synthetic peptide, Leu530-Leu-Tyr-Glu-Met-Leu-Ala-Gly-Gln-Ala-Pro-Phe-Glu-Gly-Glu-Asp -Glu-Asp- Glu-Leu-Phe-Gln-Ser-Ile-Met-Glu-His-Asn-Val-NH2(558), corresponding to part of the catalytic domain of protein kinase C, is a potent activator of the enzyme, with a Ka of approx. 10 microM. Activation was 59 +/- 4% of that observed with phosphatidylserine, predominantly due to an increased Vmax, partially calcium-dependent, observed with all three isoenzymes (alpha, beta, gamma), and resulted in autophosphorylation. It is proposed that the region between Gly528 and Arg583 is part of the protein substrate binding region of protein kinase C and synthetic peptide analogs of this region activate the enzyme by blocking the action of the enzyme's basic pseudosubstrate autoregulatory region.  相似文献   

20.
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号