首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fusion under mildly acidic pH occurs naturally during viral infection in cells and has been exploited in the field of nanoparticle-mediated drug delivery to circumvent endosomal entrapment of the cargo. Herein, we aimed to confer virus-like fusogenic activity to HDL in the form of a ca. 10-nm disc comprising a discoidal lipid bilayer and two copies of a lipid-binding protein at the edge. A series of HDL mutants were prepared with a mixture of three lipids and a cell-penetrating peptide (TAT, penetratin, or Arg8) fused to the protein. In a lipid-mixing assay with anionic liposomes at pH 5.5, one HDL mutant showed the fusogenic activity higher than known fusogenic liposomes. In live mammalian cells, this HDL mutant showed high plasma membrane-binding activity in the presence of serum independent of pH. In the absence of serum, a mildly acidic pH dependency for binding to the plasma membrane and the subsequent lipid mixing between them was observed for this mutant. We propose a novel strategy to develop HDL-based drug carriers by taking advantage of the HDL lipid/protein composite structure.  相似文献   

2.
The titratable, double-chain amphiphiles 1,2-dipalmitoyl-sn-3-succinylglycerol (1,2-DPSG), 1,2-dioleoyl-sn-3-succinylglycerol (1,2-DOSG) and 1,3-dipalmitoylsuccinylglycerol (1,3-DPSG) have been used in combination with phosphatidylethanolamine (PE) to form pH-sensitive liposomes. The effect of the compounds on dielaidoyl PE bilayer stabilization was examined by differential scanning calorimetry. Only 1,2-DPSG showed bilayer stabilization activity; whereas the other two are destabilizers at pH 7.4. All three amphiphiles became strong destabilizers at pH 5.0. The ability of the amphiphiles to stabilize DOPE liposomes was examined by light scattering and calcein entrapment. In general, 1,2-DPSG is the most potent stabilizer of PE bilayers while 1,3-DPSG is the weakest liposome stabilizer. All three compounds can be combined with DOPE to generate liposomes which are stable at neutral and basic pH. At weakly acidic pH, the liposomes are leaky and exhibit extensive lipid mixing, with protons and calcium showing synergistic effects on lipid mixing. DOPE/1,2-DPSG liposomes are stable in human plasma and remain acid-sensitive even after prolonged plasma incubation. Immunoliposomes prepared from either DOPE/1,2-DPSG or DOPE/1,2-DOSG can deliver diphtheria toxin A fragment to the cytoplasm of cultured cells in a process which involves endocytosis of the liposomes. Immunoliposomes prepared with 1,2-DPSG are more effective drug carriers than those prepared with 1,2-DOSG. These results indicate that the bilayer- and, hence the liposome-stabilization activity of the diacylsuccinylglycerol depends on the structure of the compounds. The potential drug delivery activity of the pH-sensitive liposomes composed of these lipids is discussed.  相似文献   

3.
By combining dioleoylphosphatidylethanolamine (DOPE) with oleic acid (OA), palmitoylhomocysteine (PHC) or dipalmitoylsuccinylglycerol (DPSG) we have prepared pH-sensitive liposomes with different acid sensitivities. DOPE/OA liposomes are the most acid sensitive, while DOPE/DPSG liposomes are the least acid sensitive. Incubation of DOPE/OA liposomes with mouse L929 cells reduces the pH-sensitivity of these liposomes by altering the lipid composition. Using diphtheria toxin fragment A as a marker for cytoplasmic delivery, we find that the delivery kinetics of pH-sensitive immunoliposomes closely correlates with the modified acid sensitivities of the liposomes. Immunoliposomes encounter pH 6-6.2 with a t1/2 of 5-15 min after internalization. By contrast, acidification of the endosomes to pH 5.0 takes longer (t1/2 approximately 25 min). We also used a whole cell null point technique (Yamishiro and Maxfield (1987) J. Cell Biol. 105, 2713-2721) to directly determine the average pH encountered by the endocytosed immunoliposomes. We find that acidification determined by the null point method proceeds less rapidly than that estimated from DTA delivery data. This is likely due to the fact that the measured DTA delivery is done by those liposomes which first arrive at the endosomes with sufficient acidity. Our data suggests that DOPE/PHC immunoliposomes deliver at the early endosome while DOPE/DPSG immunoliposomes deliver at the late endosomes. The DOPE/OA immunoliposomes, with the altered composition and acid sensitivity, deliver with a kinetics intermediate between the other two immunoliposomes. Thus, pH-sensitive liposomes represent useful probes for studying the kinetics of endosome acidification.  相似文献   

4.
Cholesteryl hemisuccinate (CHEMS) is an acidic cholesterol ester that self-assembles into bilayers in alkaline and neutral aqueous media and is commonly employed in mixtures with dioleoylphosphatidylethanolamine (DOPE) to form 'pH sensitive' fusogenic vesicles. We show here that CHEMS itself exhibits pH sensitive polymorphism. This is evident from the fusogenic properties of large unilamellar vesicles (LUV) composed of CHEMS and direct visualization employing freeze-fracture electron microscopy. Below pH 4.3, LUV composed of CHEMS undergo fusion as monitored by lipid mixing assays and freeze-fracture electron micrographs reveal the characteristic striated signature of H( parallel) phase lipid. It is suggested that the pH dependent phase preferences of CHEMS contribute to the pH sensitivity of LUV composed of mixtures of CHEMS and DOPE.  相似文献   

5.
Dioleoylphosphatidylethanolamine (DOPE)-containing liposomes that demonstrated pH-dependent release of their contents were stabilized in the bilayer form through the addition of a cleavable lipid derivative of polyethylene glycol (PEG) in which the PEG was attached to a lipid anchor via a disulfide linkage (mPEG-S-S-DSPE). Liposomes stabilized with either a non-cleavable PEG (mPEG-DSPE) or mPEG-S-S-DSPE retained an encapsulated dye at pH 5.5, but treatment at pH 5.5 of liposomes stabilized with mPEG-S-S-DSPE with either dithiothreitol or cell-free extracts caused contents release due to cleavage of the PEG chains and concomitant destabilization of the DOPE liposomes. While formulations loaded with doxorubicin (DXR) were stable in culture media, DXR was rapidly released in human plasma. pH-Sensitive liposomes, targeted to the CD19 epitope on B-lymphoma cells, showed enhanced DXR delivery into the nuclei of the target cells and increased cytotoxicity compared to non-pH-sensitive liposomes. Pharmacokinetic studies suggested that mPEG-S-S-DSPE was rapidly cleaved in circulation. In a murine model of B-cell lymphoma, the therapeutic efficacy of an anti-CD19-targeted pH-sensitive formulation was superior to that of a stable long-circulating formulation of targeted liposomes despite the more rapid drug release and clearance of the pH-sensitive formulation. These results suggest that targeted pH-sensitive formulations of drugs may be able to increase the therapeutic efficacy of entrapped drugs.  相似文献   

6.
The fusogenic properties of sulfatide-containing 1,2-dioleoyl-3-sn -phosphatidylethanolamine (DOPE) small unilamellar vesicles (SUVs) in the presence of CaCl2 were studied by mixing membrane lipids based on an assay of fluorescence resonance energy transfer (FRET). Fusion of the vesicles was also confirmed by mixing aqueous contents with the Tb/dipicolinate (DPA) assay. The half-times of lipid mixing revealed that the fusion rate decreased with increasing molar concentration of sulfatide. This inhibitory effect was more obvious at sulfatide concentrations higher than 30 mol%, where hydration at the membrane surface reached its maximum and the fusion was no longer pH-sensitive in the range of pH 6.0 - 9.0. Similar inhibitory effect was also observed in Ca2+-induced fusion of DOPE/ganglioside GM1 vesicles but at a lower concentration of the glycosphingolipid (20 mol%). In contrast, increasing the concentration of phosphatidylserine (PS) in DOPE/PS SUVs resulted in an increase in the rate of Ca2+-induced lipid mixing and the pH sensitivity of this system was not affected.These results are consistent with an increasing steric hindrance to membrane fusion at higher molar concentration and larger headgroup size of the glycosphingolipids. Interestingly, the pH sensitivity of the sulfatide-containing liposomes was retained when they were allowed to fuse with synaptosomes in the absence of Ca2+ by a mechanism involving protein mediation.  相似文献   

7.
Mixtures of cationic lipids and unsaturated phosphatidylethanolamine are used extensively for the intracellular delivery of plasmids and antisense oligodeoxynucleotides (ODN) in vitro. However, the mechanism by which cytoplasmic delivery of these large molecules is achieved remains unclear. The common hypothesis is that phosphatidylethanolamine promotes fusion of lipid/DNA particles with endosomal membranes, but this is inconsistent with several reports that have failed to correlate the fusogenic activity of a wide variety of lipid/DNA particles, measured by lipid mixing techniques, with their transfection activity. To address this issue further we have conducted a detailed analysis of the lipid mixing and DNA transfer activity of two, physically similar but functionally different, lipid/DNA particles composed of equimolar dioleyldimethylammonium chloride (DODAC) and dioleoylphosphatidylethanolamine (DOPE) or dioleoylphosphatidylcholine (DOPC). In combination with DODAC both phospholipids form almost identical lipid/DNA particles, they are endocytosed by cells to the same extent and each undergoes equivalent lipid mixing with cell membranes after uptake. Despite this, DNA transfer is 10- to 100-fold more extensive for lipid/DNA particles containing DOPE. We conclude that lipid mixing between lipid-based delivery systems and endosomal membranes must occur for DNA transfer to occur. However, the potency of different lipid/DNA particles correlates better with the ability of the exogenous lipid to disrupt membrane integrity.  相似文献   

8.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

9.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

10.
It has recently been reported that N-ethylmaleimide-sensitive fusion ATPase (NSF) can fuse protein-free liposomes containing substantial amounts of 1,2-dioleoylphosphatidylserine (DOPS) and 1, 2-dioleoyl-phosphatidyl-ethanolamine (DOPE) (Otter-Nilsson et al., 1999). The authors impart physiological significance to this observation and propose to re-conceptualize the general role of NSF in fusion processes. We can confirm that isolated NSF can fuse liposomes of the specified composition. However, this activity of NSF is resistant to inactivation by N-ethylmaleimide and does not depend on the presence of alpha-SNAP (soluble NSF-attachment protein). Moreover, under the same conditions, either alpha-SNAP, other proteins apparently unrelated to vesicular transport (glyceraldehyde-3-phosphate dehydrogenase or lactic dehydrogenase) or even 3 mM magnesium ions can also cause lipid mixing. In contrast, neither NSF nor the other proteins nor magnesium had any significant fusogenic activity with liposomes composed of a biologically occurring mixture of lipids. A straightforward explanation is that the lipid composition chosen as optimal for NSF favors non-specific fusion because it is physically unstable when formed into liposomes. A variety of minor perturbations could then trigger coalescence.  相似文献   

11.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

12.
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.  相似文献   

13.
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG???? was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG???? was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG???? or sterol-PEG???? into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG???? in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.  相似文献   

14.
We describe the synthesis and characterization of a pH-sensitive poly(ethylene glycol)-diortho ester-distearoyl glycerol conjugate (POD). POD was prepared by a one-step synthesis, and its acid sensitivity characterized by TLC. The conjugate was found to be stable at neutral pH for greater than 3 h but degraded completely within 1 h at pH 5. Liposomes composed of 10% of POD and 90% of a fusogenic lipid, dioleoyl phosphatidylethanolamine (DOPE) were readily prepared and remained stable for up to 12 h in neutral buffer as shown by photon correlation spectrometry and a liposome contents leakage assay. However, when POD/DOPE liposomes were incubated in acidic pH as mild as 5.5, they aggregated and released most of their contents within 30 min. The kinetics of content release from POD/DOPE liposomes consisted of two phases, a lag phase, and a burst phase. The lag phase is inversely correlated with pH and the logarithm of the length of lag phase showed a linear relationship with the buffer pH. When the POD/DOPE liposomes were incubated in 75% of fetal bovine serum at 37 degrees C, they remained as stable as traditional PEG-grafted liposomes for 12 h but released 84% of the encapsulated ANTS in the following 4 h. Upon intravenous administration into mice, liposomes composed of 10% POD and 90% DOPE were cleared from circulation by a one-compartment kinetics with a half-life of about 200 min. POD is an example for the design of a novel category of pH sensitive lipids composed of a headgroup, an acid-labile diortho ester linker and a hydrophobic tail. The uniquely fast degradation kinetics of POD at pH 5-6 and its ability to stabilize liposomes in serum make the conjugate suitable for applications for triggered drug release systems targeted to mildly acidic bio-environments such as endosomes, solid tumors, and inflammatory tissues.  相似文献   

15.
To explore early intermediates in membrane fusion mediated by influenza virus hemagglutinin (HA) and their dependence on the composition of the target membrane, we studied lipid mixing between HA-expressing cells and liposomes containing phosphatidylcholine (PC) with different hydrocarbon chains. For all tested compositions, our results indicate the existence of at least two types of intermediates, which differ in their lifetimes. The composition of the target membrane affects the stability of fusion intermediates at a stage before lipid mixing. For less fusogenic distearoyl PC-containing liposomes at 4 degrees C, some of the intermediates inactivate, and no intermediates advance to lipid mixing. Fusion intermediates that formed for the more fusogenic dioleoyl PC-containing liposomes did not inactivate and even yielded partial lipid mixing at 4 degrees C. Thus, a more fusogenic target membrane effectively blocks nonproductive release of the conformational energy of HA. Even for the same liposome composition, HA forms two types of fusion intermediates, dissimilar in their stability and propensity to fuse. This diversity of fusion intermediates emphasizes the importance of local membrane composition and local protein concentration in fusion of heterogeneous biological membranes.  相似文献   

16.
Conformational changes in the HA2 subunit of influenza hemagglutinin (HA) are coupled to membrane fusion. We investigated the fusogenic activity of the polypeptide FHA2 representing 127 amino-terminal residues of the ectodomain of HA2. While the conformation of FHA2 both at neutral and at low pH is nearly identical to the final low-pH conformation of HA2, FHA2 still induces lipid mixing between liposomes in a low-pH-dependent manner. Here, we found that FHA2 induces lipid mixing between bound cells, indicating that the "spring-loaded" energy is not required for FHA2-mediated membrane merger. Although, unlike HA, FHA2 did not form an expanding fusion pore, both acidic pH and membrane concentrations of FHA2, required for lipid mixing, have been close to those required for HA-mediated fusion. Similar to what is observed for HA, FHA2-induced lipid mixing was reversibly blocked by lysophosphatidylcholine and low temperature, 4 degrees C. The same genetic modification of the fusion peptide inhibits both HA- and FHA2-fusogenic activities. The kink region of FHA2, critical for FHA2-mediated lipid mixing, was exposed in the low-pH conformation of the whole HA prior to fusion. The ability of FHA2 to mediate lipid mixing very similar to HA-mediated lipid mixing is consistent with the hypothesis that hemifusion requires just a portion of the energy released in the conformational change of HA at acidic pH.  相似文献   

17.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

18.
The discovery of siRNA has been an important step in gene therapy, but the problem of delivering siRNA to a target organ limits its use as a therapeutic drug. Liposomes can be used as a nonviral vector to deliver siRNA to target cells. In this study we developed a novel method of producing asymmetric liposome particles (ALPs) with highly efficient siRNA encapsulation. Two kinds of lipid inverted micelles were prepared for the purpose of obtaining ALPs. The inner one is composed of ionizable cationic 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), which entrap siRNA, and the outer one is composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), DOPE, polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (PEG-PE), and cholesterol. After mixing the inverted micelles, ALPs encapsulating siRNA were obtained by solvent evaporation and dialysis. This process allowed more than 90% siRNA encapsulation as well as the negatively charged surface. The ALPs protected siRNA from ribonuclease A degradation. ALPs without any surface modification elicited almost no uptake into cells, while the surface-modified ALPs with a polyarginine peptide (R12) induced nonspecific cell penetration. The conjugation of the anti-human epidermal growth factor receptor antibody (anti-EGFR) to ALPs induces an EGFR-mediated uptake into the non-small cell lung cancer cell lines but not into NIH-3T3 cells without the receptor. The siRNA encapsulated in ALPs showed the R12- or anti-EGFR-dependent target gene silencing in NCI-H322 cells. These properties of ALPs are useful for target-specific delivery of siRNA after modification of ALPs with a target-specific ligand.  相似文献   

19.
Cationic cell-penetrating peptides (CPPs) are a promising vehicle for the delivery of macromolecular drugs. Although many studies have indicated that CPPs enter cells by endocytosis, the mechanisms by which they cross endosomal membranes remain elusive. On the basis of experiments with liposomes, we propose that CPP escape into the cytosol is based on leaky fusion (i.e., fusion associated with the permeabilization of membranes) of the bis(monoacylglycero)phosphate (BMP)-enriched membranes of late endosomes. In our experiments, prototypic CPP HIV-1 TAT peptide did not interact with liposomes mimicking the outer leaflet of the plasma membrane, but it did induce lipid mixing and membrane leakage as it translocated into liposomes mimicking the lipid composition of late endosome. Both membrane leakage and lipid mixing depended on the BMP content and were promoted at acidic pH, which is characteristic of late endosomes. Substitution of BMP with its structural isomer, phosphatidylglycerol (PG), significantly reduced both leakage of the aqueous probe from liposomes and lipid mixing between liposomes. Although affinity of binding to TAT was similar for BMP and PG, BMP exhibited a higher tendency to support the inverted hexagonal phase than PG. Finally, membrane leakage and peptide translocation were both inhibited by inhibitors of lipid mixing, further substantiating the hypothesis that cationic peptides cross BMP-enriched membranes by inducing leaky fusion between them.  相似文献   

20.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 degrees C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (H(II)) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号