首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this study, we report a detailed analysis of the full heat stress response in Drosophila melanogaster females, using whole genome gene expression arrays (Affymetrix Inc, Santa Clara, CA, USA). The study focuses on up- as well as downregulation of genes from just before and at 8 time points after an application of short heat hardening (36 degrees C for 1 hour). The expression changes were followed up to 64 hours after the heat stress, using 4 biological replicates. This study describes in detail the dramatic change in gene expression over time induced by a short-term heat treatment. We found both known stress responding genes and new candidate genes, and processes to be involved in the stress response. We identified 3 main groups of stress responsive genes that were early-upregulated, early-downregulated, and late-upregulated, respectively, among 1222 differentially expressed genes in the data set. Comparisons with stress sensitive genes identified by studies of responses to other types of stress allow the discussion of heat-specific and general stress responses in Drosophila. Several unexpected features were revealed by this analysis, which suggests that novel pathways and mechanisms are involved in the responses to heat stress and to stress in general. The majority of stress responsive genes identified in this and other studies were downregulated, and the degree of overlap among downregulated genes was relatively high, whereas genes responding by upregulation to heat and other stress factors were more specific to the stress applied or to the conditions of the particular study. As an expected exception, heat shock genes were generally found to be upregulated by stress in general.  相似文献   

4.
5.
Regulation of heat shock proteins (Hsps) by the heat shock factor (HSF) and the importance of these proteins for resistance to heat stress is well documented. Less characterized is the importance of Hsps for cold stress resistance although Hsp70 is known to be induced following long-term cold exposure in Drosophila melanogaster. In this study, a temperature-sensitive HSF mutant line was used to investigate the role of HSF activation following heat hardening, rapid cold hardening (RCH) and long-term cold acclimation (LTCA) on heat and cold resistance, and this was correlated with Hsp70 expression. In addition, the effect of HSF activation on high-temperature knock-down resistance was evaluated. We found a significantly decreased HSF activation in the mutant line as compared to a corresponding control line following heat hardening, and this was correlated with decreased heat resistance of the mutant line. However, we did not find this difference in HSF activity to be important for resistance to cold stress or high-temperature knock-down. The findings indicate that induction of stress genes regulated by HSF, such as Hsps, although occurring following LTCA, are not of major importance for cold stress resistance and neither for RCH nor high-temperature knock-down resistance in D. melanogaster.  相似文献   

6.
7.
8.
9.
10.
Heat shock genes are the most evolutionarily ancient among the systems responsible for adaptation of organisms to a harsh environment. The encoded proteins (heat shock proteins, Hsps) represent the most important factors of adaptation to adverse environmental conditions. They serve as molecular chaperones, providing protein folding and preventing aggregation of damaged cellular proteins. Structural analysis of the heat shock genes in individuals from both phylogenetically close and very distant taxa made it possible to reveal the basic trends of the heat shock gene organization in the context of adaptation to extreme conditions. Using different model objects and nonmodel species from natural populations, it was demonstrated that modulation of the Hsps expression during adaptation to different environmental conditions could be achieved by changing the number and structural organization of heat shock genes in the genome, as well as the structure of their promoters. It was demonstrated that thermotolerant species were usually characterized by elevated levels of Hsps under normal temperature or by the increase in the synthesis of these proteins in response to heat shock. Analysis of the heat shock genes in phylogenetically distant organisms is of great interest because, on one hand, it contributes to the understanding of the molecular mechanisms of evolution of adaptogenes and, on the other hand, sheds the light on the role of different Hsps families in the development of thermotolerance and the resistance to other stress factors.  相似文献   

11.
12.
13.
14.
Heat shock proteins in toxicology: How close and how far?   总被引:2,自引:0,他引:2  
The response to stress triggers activation of the genes involved in cell survival and/or cell death. Stress response is a ubiquitous feature of cells that is induced under stress conditions. As a part of this response a set of genes called stress genes are induced to synthesize a group of proteins called heat shock proteins (Hsps). The Hsps play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. Because of their sensitivity to even minor assaults, Hsps are suitable as an early warning bio-indicator of cellular hazard. Despite having enormous use in toxicology, the current state of knowledge in defining a mechanism of action or accurately predicting toxicity based on stress gene expression warrants further investigation. The goal of this review is to summarize current developments in the application of stress genes and their products ‘Hsps’ in toxicology with a brief discussion of the caveats. While focusing on hsp70 because of its higher conservation across the taxa and since it is one of the first to be induced under stress conditions, we will also discuss other members of the stress gene family.  相似文献   

15.
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.  相似文献   

16.
17.
Using homologous molecular probes, we examined the influence of equivalent temperature shifts on the in vivo expression of genes coding for a constitutive heat shock protein (Hsc70), heat shock proteins (Hsps) (Hsp70 and Hsp90), and polyubiquitin, after acclimation in the American lobster, Homarus americanus. We acclimated sibling, intermolt, juvenile male lobsters to thermal regimes experienced during overwintering conditions (0.4 +/- 0.3 degrees C), and to ambient Pacific Ocean temperatures (13.6 +/- 1.2 degrees C), for 4-5 weeks. Both groups were subjected to an acute thermal stress of 13.0 degrees C, a temperature shift previously found to elicit a robust heat shock response in ambient-acclimated lobsters. Animals were examined after several durations of acute heat shock (0.25-2 hours) and after several recovery periods (2-48 hours) at the previous acclimation temperature, following a 2-hour heat shock. Significant inductions in Hsp70, Hsp90, and polyubiquitin messenger RNA (mRNA) levels were found for the ambient-acclimated group. Alternatively, for the cold-acclimated group, an acute thermal stress over an equivalent interval resulted in no induction in mRNA levels for any of the genes examined. For the ambient-acclimated group, measurements of polyubiquitin mRNA levels showed that hepatopancreas, a digestive tissue, incurred greater irreversible protein damage relative to the abdominal muscle, a tissue possessing superior stability over the thermal intervals tested.  相似文献   

18.
19.
20.
Heat‐shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat‐shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat‐shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in “omic” quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat‐shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade‐offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号