首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two further internode length genes are identified in Pisum sativum L. and named lka (identified from line NGB5865) and lkb (from NGB5862). These genes result in a similar phenotype, which includes reduced stem elongation, peduncle length and basal branching, and 'banding' of the stem. These effects are similar to, but less severe than, those of gene lk . Genes lka and lkb influence gibberellin (GA) sensitivity, since mutants NGB5865 and NGB5862 possess similar levels of endogenous GA-like substances to the wild-type parental cultivar Torsdag and respond less to applied GA1 than do wild-type plants or GA-synthesis mutants of a similar stature. The action of genes lka and lkb is localised in the young apical tissue but is not thought to involve GA-perception, since plants possessing genes lka and lkb are not true phenocopies of GA-deficient plants. The genetic interaction of genes lka and lkb is examined and the action of gene lkb on a le gene background determined.  相似文献   

2.
Do brassinosteroids mediate the water stress response?   总被引:1,自引:0,他引:1  
Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea ( Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.  相似文献   

3.
Uncoupling brassinosteroid levels and de-etiolation in pea   总被引:14,自引:1,他引:13  
The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1 , the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.  相似文献   

4.
Characterization of two brassinosteroid C-6 oxidase genes in pea   总被引:1,自引:0,他引:1       下载免费PDF全文
C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea.  相似文献   

5.
The brassinosteroids (BRs) occur ubiquitously in the plant kingdom. The occurrence of BRs has been demonstrated in almost every part of higher plants, such as pollen, flower buds, fruits, seeds, vascular cambium, leaves, shoots and roots. In this study, BRs were isolated and identified in the culture of wild-type Chlorella vulgaris. Seven BRs, including teasterone, typhasterol, 6-deoxoteasterone, 6-deoxotyphasterol, 6-deoxocastasterone, castasterone and brassinolide, were identified by GC–MS. All compounds belong to the BR biosynthetic pathway. The results suggest that early and late C6 oxidation pathways are operating in C. vulgaris. This study represents the first isolation of BRs from C. vulgaris cultures.  相似文献   

6.
The effects of altered endogenous indole-3-acetic (IAA) levels on elongation in garden pea (Pisum sativum L.) plants were investigated. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) were applied to elongating internodes of wild-type and mutant lkb plants. The lkb mutant was included because elongating lkb internodes contained 2- to 3-fold less free IAA than those of the wild type. In the wild type, TIBA reduced both the IAA level and internode elongation below the site of application. Both TIBA and HFCA strongly promoted the elongation of lkb internodes and also raised IAA levels above the application site. The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) also markedly increased internode elongation in lkb plants and virtually restored petioles and tendrils to their wild-type length. In contrast, treatment of wild-type plants with TIBA, HFCA, or 2,4-D caused little or no increase in elongation above the application site. The ethylene synthesis inhibitor aminoethoxyvinylglycine also increased stem elongation in lkb plants, and combined application of HFCA and aminoethoxy-vinylglycine restored lkb internodes to the wild-type length. It is concluded that the level of IAA in wild-type internodes is necessary for normal elongation, and that the reduced stature of lkb plants is at least partially attributable to a reduction in free IAA level in this mutant.  相似文献   

7.
Several cytochrome P450 monooxygenases (P450s) catalyze essential oxidative reactions in brassinosteroid (BR) biosynthesis as well as in BR catabolism; however, only limited information exists on the P450s involved in the BR catabolic pathway. Here, we report the characterization of two P450 mRNAs, CYP734A7 and CYP734A8, from Lycopersicon esculentum. These P450s show high homology with Arabidopsis CYP734A1/BAS1 (formerly CYP72B1), which inactivates BRs via C-26 hydroxylation. Transgenic tobacco plants that constitutively overexpressed CYP734A7 showed an extreme dwarf phenotype similar to BR deficiency. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in the transgenic plants showed that the levels of castasterone and 6-deoxocastasterone significantly decreased in comparison with those in wild-type plants. By measuring the Type I substrate-binding spectra using recombinant CYP734A7, the dissociation constants for castasterone, brassinolide, and 6-deoxocastasterone were determined to be 6.7, 12, and 12 microM, respectively. In an in vitro assay, CYP734A7 was confirmed to metabolize castasterone to 26-hydroxycastasterone. In addition, 28-norcastasterone and brassinolide were converted to the hydroxylated products. The expression of CYP734A7 and CYP734A8 genes in tomato seedlings was upregulated by exogenous application of bioactive BRs. These results indicated that CYP734A7 is a C-26 hydroxylase of BRs and is likely involved in BR catabolism in tomato. The presence of the CYP734A subfamily in various plant species suggests that oxidative inactivation of BRs by these proteins is a widespread phenomenon in plants.  相似文献   

8.
We characterized a rice dwarf mutant, ebisu dwarf (d2). It showed the pleiotropic abnormal phenotype similar to that of the rice brassinosteroid (BR)-insensitive mutant, d61. The dwarf phenotype of d2 was rescued by exogenous brassinolide treatment. The accumulation profile of BR intermediates in the d2 mutants confirmed that these plants are deficient in late BR biosynthesis. We cloned the D2 gene by map-based cloning. The D2 gene encoded a novel cytochrome P450 classified in CYP90D that is highly similar to the reported BR synthesis enzymes. Introduction of the wild D2 gene into d2-1 rescued the abnormal phenotype of the mutants. In feeding experiments, 3-dehydro-6-deoxoteasterone, 3-dehydroteasterone, and brassinolide effectively caused the lamina joints of the d2 plants to bend, whereas more upstream compounds did not cause bending. Based on these results, we conclude that D2/CYP90D2 catalyzes the steps from 6-deoxoteasterone to 3-dehydro-6-deoxoteasterone and from teasterone to 3-dehydroteasterone in the late BR biosynthesis pathway.  相似文献   

9.
Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels.  相似文献   

10.
Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous work has shown that the formation of castasterone from 6-deoxocastasterone is catalyzed by members of the CYP85A family of cytochrome P-450 monooxygenases. A null mutation in the tomato Dwarf (CYP85A1) gene, extreme dwarf (d(x)), causes severe dwarfism due to brassinosteroid deficiency, but the d(x) mutant still produces fruits. Here, we show that d(x) fruits contain brassinolide at a higher level than wild-type fruits and that a new CYP85A gene, CYP85A3, is preferentially expressed in tomato fruits. Tomato CYP85A3 catalyzed the Baeyer-Villiger oxidation to produce brassinolide from castasterone in yeast, in addition to the conversion of 6-deoxocastasterone to castasterone. We also show that Arabidopsis CYP85A2, which was initially characterized as castasterone synthase, also has brassinolide synthase activity. Exogenous application of castasterone and brassinolide to the Arabidopsis cyp85a1/cyp85a2 double mutant suggests that castasterone can function as an active brassinosteroid but that its conversion into brassinolide is necessary for normal vegetative development in Arabidopsis. We postulate that castasterone is the major active brassinosteroid during vegetative growth in tomato, whereas brassinolide may play an organ-specific role in fruit development in this species.  相似文献   

11.
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.  相似文献   

12.
Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3beta family. Unlike human glycogen synthase kinase 3beta, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways.  相似文献   

13.
Biosynthetic pathways of brassinolide in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone --> 3-dehydro-6-deoxoteasterone --> 6-deoxotyphasterol --> 6-deoxocastasterone --> 6alpha-hydroxycastasterone --> castasterone --> BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone --> 3-dehydroteasterone --> typhasterol --> castasterone --> BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants.  相似文献   

14.
26-Norbrassinolide, identified as a metabolite of brassinolide in cultured cells of the liverwort, Marchantia polymorpha, as well as 26-norcastasterone and 26-nor-6-deoxocastasterone were synthesized. Synthesis of these new brassinosteroids was conducted by employing the orthoester Claisen rearrangement and asymmetric dihydroxylation as key reactions. The modified rice lamina inclination test indicated that these three 26-norbrassinosteroids were less active than their corresponding C28 brassinosteroids. Growth-promoting activities were also examined by using the brassinosteroid-deficient, dwarf mutant lkb of garden pea (Pisum sativum L.). In this assay, 26-norbrassinolide was as effective as brassinolide and 26-norcastasterone was more effective than castasterone although 26-nor-6-deoxocastasterone was much less effective than 6-deoxocastasterone. Therefore, removal of C-26 of brassinosteroids does not necessarily reduce the biological activity. The role of C-26 removal in Marchantia cells remains unclear.  相似文献   

15.
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown.  相似文献   

16.
The effect of exogenous brassinosteroids (BR) on the flowering induction of Pharbitis nil was examined. Generally plants treated with brassinolide and castasterone form less number of flowers than control plants, but degree of flowering inhibition was depended on the concentration and the method of BR application as well as the length of the inductive dark period. In plants regenerated from sub-induced apices treated with brassinolide at concentration of 1 and 10 M the flower formation was inhibited completely.  相似文献   

17.
The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed.  相似文献   

18.
A dwarf mutant of broad bean ( Vicia faba L.), the variety Rinrei, has been created by γ -ray irradiation. Rinrei is characterized by dark green leaves and by reduced plant length, internode and petiole length, shoot weight, and number of branches. Genetic analysis of hybrids between Rinrei and two wild-type lines indicated that these characteristics are controlled by a single recessive gene. The phenotype of Rinrei was restored to that of the wild type by application of brassinolide, but not by GA3. Qualitative and quantitative analysis by gas chromatography–mass spectrometry indicated that 24-methylenecholesterol and isofucosterol accumulated in Rinrei to levels more than 30 times higher than in the wild type. In contrast, Rinrei had lower than wild-type levels of campesterol, sitosterol and brassinosteroids. Therefore, Rinrei is a brassinosteroid-deficient mutant defective in sterol C-24 reduction. The gene was tentatively designated as brassinosteroid deficient dwarf 1 , bdd1 , which seems to be a homologue of Arabidopsis dwf1 ( dim , cbb1 ) and pea lkb .  相似文献   

19.
We recently demonstrated the biosynthesis of 24-ethylidene brassinosteroids in Arabidopsis thaliana. To determine the physiological role of biosynthesis of 24-ethylidene brassinosteroids, metabolism of 28-homodolichosterone as the end product of 24-ethylidene brassinosteroids biosynthesis was examined by a crude enzyme solution prepared from A. thaliana. In wild-type plants, dolichosterone and castasterone were identified as enzyme products on GC-MS analysis. In a mutant where DWARF1 was overexpressed (35S-DWF1), the conversion rate of 28-homodolichosterone to castasterone was significantly increased. These results indicate that conversion of 28-homodolichosterone to castasterone is mediated by dolichosterone in Arabidopsis. In the root growth assay, inhibitory activity was enhanced in the order of castasterone > dolichosterone > 28-homodolichosterone, demonstrating that conversion of 28-homodolichosterone to castasterone via dolichosterone is a biosynthetic reaction that increases BR activity in Arabidopsis. Compared to Arabidopsis grown under dark conditions, light-grown Arabidopsis showed up-regulated DWARF1 expression, resulting in an increased conversion rate of 28-homodolichosterone to castasterone, suggesting that light is an important regulatory factor for the biosynthetic connection of 24-ethylidene brassinosteroids and 24-methyl brassinosteroids in A. thaliana. Consequently, 24-ethylidene brassinosteroids biosynthesis to generate 28-homodolichosterone is a lightregulated alternative route for synthesis of the biologically-active BRs, castasterone and brassinolide in Arabidopsis plants.  相似文献   

20.
Short brassinosteroid (BR) mutants lk, lka and lkb of pea (Pisum sativum L.) were investigated by immunofluorescence microscopy to elucidate the role of brassinosteroids in cell elongation via an effect on the microtubules (MTs). This study adds to our knowledge the fact that brassinolide (BL) can cause MT realignment in azuki bean and rescue the MT organization of BR mutants in Arabidopsis. It provides novel information on both cortical and epidermal cells and presents detailed information about the ratios of all MT orientations present, ranging from transverse (perpendicular to the elongating axis) to longitudinal (parallel to the elongating axis). Experiments were conducted in vivo using intact plants with direct application of a small amount of brassinolide (BL) to the internode. Employing a BR-receptor mutant, lka, and the BR-synthesis mutants, lk and lkb, allowed the identification and isolation of any BR-induced responses in the MT cytoskeleton following BL application. Increases in growth rate were noted in all pea lines including WT following BL application. These increases were strong in the BR-synthesis mutants, but weak in the BR-receptor mutant. Immunofluorescence revealed significant differences in the average MT orientation of cortical cells of mutants versus WTs. Importantly, these mutants possessed abundant MTs, unlike the BR-deficient bul1-1 mutant in Arabidopsis. Following BL application, the epidermal and cortical cells of lk and lkb plants showed a large and significant shift in MT orientation towards more transverse, whereas lka plants showed a small and nonsignificant response in these cells. These results suggest that the BR response pathway is linked to the regulation of MT orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号