首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Chang Y  Feng LF  Xiong J  Miao W 《动物学研究》2011,32(5):476-484
多个金属硫蛋白基因异构型已在四膜虫中被鉴定,这些异构型可分为7a和7b两个亚家族。该文利用实时荧光定量PCR技术检测了嗜热四膜虫金属硫蛋白基因MTT2和MTT4在Hg、Cu、Cd、Zn、H2O2暴露下的表达水平,结果显示两者表达规律相似,均为:Cu暴露下上调最高(>200倍),Hg次之,Cd、Zn上调倍数不大,H2O2有下调趋势。此表达规律明显有别于7a亚家族,具有7b亚家族的表达特征。同种诱导物暴露下MTT4的上调表达幅度比MTT2高出数倍,结合生物信息学分析结果,推测可能与MTT2和MTT4上游调控元件(如AP-1、MRE等)的数量差异有关。基于MTT2和MTT4在结构和功能上的高度相似性,推测两者可能是经近期基因复制事件产生,并遵循基因剂量模型进化而来。  相似文献   

5.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

6.
Analysis of type 1 metallothionein cDNAs in Vicia faba   总被引:7,自引:0,他引:7  
  相似文献   

7.
8.
A novel analytical procedure for the identification of metal (Hg, Cd, Cu, Zn) complexes with individual metallothionein (MT) isoforms in biological tissues by electrospray MS/MS was developed. The sample preparation was reduced to three rapid steps: the two-fold dilution of the sample cytosol with acetonitrile, the recovery of the supernatant containing MT-complexes by centrifugation and its concentration under nitrogen flow. The replacement of reversed phase HPLC by hydrophilic interaction LC (HILIC) allowed the preservation of the unstable and low abundant metallothionein zinc-mercury mixed complexes (MT-Zn(6)Hg). The MT complexes eluted were detected by ICP MS and identified in terms of molecular mass by electrospray high resolution (100,000) MS. The identification was completed by on line demetallation and the determination of the molecular mass of the apoform, followed by amino acid sequencing in the top-down mode using high energy collision fragmentation (HCD). The method was applied to the identification of MT complexes in a white-sided dolphin (Lagenorhynchus acutus) liver homogenate. The Zn complex of the N-acetylated MT2 isoform was found to be predominant, the presence of mixed complexes with Cd, Cu and, for the first time ever, Hg, was demonstrated. The latter finding has the potential to shed new light on the mercury detoxification mechanism in marine organisms.  相似文献   

9.
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.  相似文献   

10.
We studied metallothionein (MT) response in the manure worm Eisenia fetida after exposures to cadmium (Cd), zinc (Zn) or cadmium and zinc spiked media. MT was studied both at the protein level by Dot Immunobinding Assay, (DIA) and at the expression level by Northern blotting. Cd was highly accumulated by worms whereas Zn body concentration was regulated. In addition, Zn would limit Cd accumulation in worms exposed to low Cd concentrations (1 and 8 mg Cd kg(-1) of dry soil). Exposure to a mixture of Cd and Zn at high concentrations increased cytosolic MT levels. This increase would allow worms to regulate body Zn concentrations and also to limit Cd toxicity. Cd exposures increased gene expression of Cd-binding MT isoform (MT 2A) whereas Zn did not. However, when both metals were at high concentrations in the exposure medium, this expression was further increased. Several hypotheses are proposed to explain the results and the best approach to estimate metal exposure of this earthworm species is given. Further experiments have now to be performed to evaluate the usefulness of these MT responses for field contaminated soils toxicity assessment using this earthworm species.  相似文献   

11.
Chicken metallothionein (ckMT) is the paradigm for the study of metallothioneins (MTs) in the Aves class of vertebrates. Available literature data depict ckMT as a one-copy gene, encoding an MT protein highly similar to mammalian MT1. In contrast, the MT system in mammals consists of a four-member family exhibiting functional differentiation. This scenario prompted us to analyse the apparently distinct evolutionary patterns followed by MTs in birds and mammals, at both the functional and structural levels. Thus, in this work, the ckMT metal binding abilities towards Zn(II), Cd(II) and Cu(I) have been thoroughly revisited and then compared with those of the mammalian MT1 and MT4 isoforms, identified as zinc- and copper-thioneins, respectively. Interestingly, a new mechanism of MT dimerization is reported, on the basis of the coordinating capacity of the ckMT C-terminal histidine. Furthermore, an evolutionary study has been performed by means of in silico analyses of avian MT genes and proteins. The joint consideration of the functional and genomic data obtained questions the two features until now defining the avian MT system. Overall, in vivo and in vitro metal-binding results reveal that the Zn(II), Cd(II) and Cu(I) binding abilities of ckMT lay between those of mammalian MT1 and MT4, being closer to those of MT1 for the divalent metal ions but more similar to those of MT4 for Cu(I). This is consistent with a strong functional constraint operating on low-copy number genes that must cope with differentiating functional limitation. Finally, a second MT gene has been identified in silico in the chicken genome, ckMT2, exhibiting all the features to be considered an active coding region. The results presented here allow a new insight into the metal binding abilities of warm blooded vertebrate MTs and their evolutionary relationships.  相似文献   

12.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

13.
To characterize avian MTs, MT cDNAs were cloned from liver of cormorant (Phalacrocorax carbo) and mallard (Anas platyrhynchos). Expression profiles of MT isoforms and relationships between metal accumulation and MT mRNA expression in tissues were also investigated. We succeeded in cDNA cloning of MT1/2 from cormorant and MT1 in mallard. DNA sequence of chicken MT1 was obtained from chicken (Gallus gallus) genomic database. Considering previous reports on avian MTs, birds possess at least two distinct MT isoforms. Comparison of genomic synteny among vertebrates and phylogenetic analysis of MT amino acid sequences revealed that avian MT1/2 are evolutionarily close to mammalian MT3. Messenger RNAs of both MT isoforms were detected in all the tissues/organs in cormorant and mallard. Liver was the primary organ for cormorant MT1/2, and mallard MT2, whereas MT1 was dominant in mallard heart. Interspecies comparison of tissue distribution of MT mRNA expression between cormorant and mallard indicated that MT2 profile was similar, but MT1 was not. Significant positive correlations of mRNA expression levels between MT1 and MT2 were observed in the liver and kidney of cormorants, whereas no correlation was found in mallards. Expression levels of cormorant MT1/2 showed significant positive correlations with hepatic Cu and Zn concentrations, suggesting that both MT isoforms were induced by Cu and Zn in livers. Cormorant MT2 expression level exhibited a significant positive correlation with hepatic Ag, and a negative correlation with Rb, indicating that Ag and Rb concentrations depend on the expression of MT2 by Cu and Zn. In mallard, MT1 had no correlation with any metal concentration, and MT2 expression was positively correlated only with Cu, even though hepatic Cu and Zn concentrations in mallard were much higher than in cormorant. This may indicate that cormorant is a more susceptible species than mallard in terms of MT induction. These findings suggest tissue-, species-, and MT isoform-specific responses to metal stresses in these aquatic birds.  相似文献   

14.
15.
The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.  相似文献   

16.
17.
Metallothioneins (MTs) were characterised in the kidneys of a white-sided dolphin Lagenorhynchus acutus stranded along the Belgian coast, displaying high levels of cadmium (Cd) and mercury (Hg) in liver and kidney. The protein has two isoforms: MT-1 and MT-2. MT-1 binds Cu, Zn, Hg and Cd, while MT-2 only binds Zn, Hg and Cd. This suggests different metabolic functions for the two isoforms: MT-1 is mainly involved in Cu homeostasis; MT-2, which was four-fold more abundant than MT-1, detoxifies most of the accumulated cadmium.  相似文献   

18.
19.
An experiment was conducted to invest effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein gene expression and protein synthesis in liver and kidney in rats. Forty rats, 6?weeks old, were randomly allocated into two groups. A group was given CdCl(2) (1?mg/KgCd(2+)) by intraperitoneal injection once a day. The other group was treated with normal saline in the same way. Liver and kidney were collected for analysis at the end of the third week. Results showed that Cd exposure increased Cd (P?相似文献   

20.
Two metallothionein cDNA isoforms (MT-1 and MT-2) were isolated from carp (Cyprinus carpio) by RT-PCR. Sequence analysis of the cDNAs revealed two amino acid differences between the coding regions and markedly different 3'-untranslated ends. Gene-specific primers were selected and used in RT-PCR reactions to measure the basal MT-1 and MT-2 mRNA levels and to follow the inducer-specific expression of MT genes in different tissues during in vivo studies. In the brain and muscle, the uninduced levels of the two MT mRNAs were similar. In the kidney and liver, the MT-1 gene product predominated, while in the heart the relative expression levels of the two genes were opposite. Both the MT-1 and MT-2 mRNA levels increased with Cd concentration in a time- and dose-dependent manner. The expression of MT-2, however, was more responsive to a high Cd concentration. In parallel with the induction of the MTs by Cd, we followed the accumulation of this metal in the kidney and liver. Although the Cd level was always higher in the kidney during treatment, the rate of accumulation was higher in the liver. Cold stress resulted in a significantly higher induction of MT-1 than of MT-2, while heat shock had no effect on the expression of either gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号