首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Depletion of intracellular calcium stores by agonist stimulation is coupled to calcium influx across the plasma membrane, a process termed capacitative calcium entry. Capacitative calcium entry was examined in cultured guinea pig enteric glial cells exposed to endothelin 3. Endothelin 3 (10 n M ) caused mobilization of intracellular calcium stores followed by influx of extracellular calcium. This capacitative calcium influx was inhibited by Ni2+ (89 ± 2%) and by La3+ (78 ± 2%) but was not affected by L-, N-, or P-type calcium channel blockers. Chelerythrine, a specific antagonist of protein kinase C, dose-dependently inhibited capacitative calcium entry. The nitric oxide synthase inhibitor N G-nitro- l -arginine decreased calcium influx in a dose-dependent manner. The combination of chelerythrine and N G-nitro- l -arginine produced synergistic inhibitory effects. Capacitative calcium entry occurs in enteric glial cells via lanthanum-inhibitable channels through a process regulated by protein kinase C and nitric oxide.  相似文献   

2.
The present study was conducted on human Jurkat T-cell lines in order to elucidate the role of phospholipase A2 in capacitative calcium entry. We have employed thapsigargin (TG) that induces increases in [Ca2+]i by emptying the calcium pool of endoplasmic reticulum, followed by capacitative calcium entry. We designed a Ca2+ free/Ca2+ reintroduction (CFCR) protocol for the experiments, conducted in Ca2+-free medium. By employing CFCR protocol, we observed that addition of exogenous arachidonic acid (AA) stimulated TG-induced capacitative calcium influx. The liberation of endogenous AA and its autocrine action seems to be implicated during TG-induced capacitative calcium influx: TG potentiates the induction of constitutively expressed mRNA of four PLA2 isoforms (type 1B, IV, V, VI), the inhibitors of the three PLA2 isotypes (type 1B, V, VI) inhibit TG-induced release of [3H]AA into the extracellular medium, and finally, these PLA2 inhibitors do curtail TG-stimulated capacitative calcium entry in these cells. These results suggest that stimulation of three isoforms of PLA2 by thapsigargin liberates free AA that, in turn, induces capacitative calcium influx in human T-cells.  相似文献   

3.
4.
Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.  相似文献   

5.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

6.
Capacitative calcium entry or store-operated calcium entry in nonexcitable cells is a process whereby the activation of calcium influx across the plasma membrane is signaled by depletion of intracellular calcium stores. Transient receptor potential (TRP) proteins have been proposed as candidates for store-operated calcium channels. Human TRPC3 (hTRPC3), an extensively studied member of the TRP family, is activated through a phospholipase C-dependent mechanism, not by store depletion, when expressed in HEK293 cells. However, store depletion by thapsigargin is sufficient to activate hTRPC3 channels when expressed in DT40 avian B-lymphocytes. To gain further insights into the differences between hTRPC3 channels generated in these two expression systems and further understand the role of hTRPC3 in capacitative calcium entry, we examined the effect of two well characterized inhibitors of capacitative calcium entry, Gd3+ and 2-aminoethoxydiphenyl borane (2APB). We confirmed that in both DT40 cells and HEK293 cells, 1 microm Gd3+ or 30 microm 2APB completely blocked calcium entry due to receptor activation or store depletion. In HEK293 cells, 1 microm Gd3+ did not block receptor-activated hTRPC3-mediated cation entry, whereas 2APB had a partial (approximately 60%) inhibitory effect. Interestingly, store-operated hTRPC3-mediated cation entry in DT40 cells was also partially inhibited by 2APB, whereas 1 microm Gd3+ completely blocked store-operated hTRPC3 activity in these cells. Furthermore, the sensitivity of store-operated hTRPC3 channels to Gd3+ in DT40 cells was similar to the endogenous store-operated channels, with essentially 100% block of activity at concentrations as low as 0.1 microm. Finally, Gd3+ has a rapid inhibitory effect when added to fully developed hTRPC3-mediated calcium entry, suggesting a direct action of Gd3+ on hTRPC3 channels. The distinct action of these inhibitors on hTRPC3-mediated cation entry in these two cell types may result from their different modes of activation and may also reflect differences in basic channel structure.  相似文献   

7.
Triggers of Jurkat T cell apoptosis include sphingosine and ceramide. Sphingosine and ceramide further inhibit capacitative Ca2+ entry (ICRAC), an effect leading to inactivation but not death of Jurkat T cells. Mitochondria are key organelles in the machinery leading to apoptosis and on the other hand have been shown to participate in the regulation of Ca2+ entry. The present experiments were performed to explore whether treatment of Jurkat T cells with sphingosine leads to apoptosis and reduced Ca2+ entry and whether those effects are sensitive to expression of the antiapoptotic protein Bcl2, localized in the outer mitochondrial membrane. Exposure of Jurkat T cells to 10 microM spingosine was according to DiOC6 fluorescence followed by mitochondrial depolarization and according to Fura-red/Fluo-3 fluorescence followed by decreased capacitative Ca2+ entry. Mitochondrial depolarization was significantly delayed in cells overexpressing wild type Bcl2 or Bcl2 targeted to the mitochondrial membrane, whereas no significant influence on mitochondrial depolarization was observed in cells expressing Bcl2 lacking the membrane targeting motif or Bcl2 targeted to the endoplasmatic reticulum. In contrast to mitochondrial potential, the blunting of capacitative Ca2+ entry following sphingosine treatment was not sensitive to mitochondrial Bcl2 expression. In conclusion sphingosine exposure leads to both, mitochondrial depolarization and inhibition of capacitative Ca2+ entry. Mitochondrial Bcl2 reverses the effect on mitochondria but not on Ca2+ entry and thus leads to dissociation of those two sequelae of sphingosine treatment.  相似文献   

8.
Zhou JG  Qiu QY  Zhang Z  Liu YJ  Guan YY 《Life sciences》2006,78(14):1558-1563
It is generally thought that receptor-operated Ca2+ entry is related to store-operated or capacitative Ca2+ entry mechanism. Recent evidence suggests that non-capacitative Ca2+ entry pathways are also involved in receptor activated Ca2+ influx in many different kinds of cells. In this study, we studied whether alpha1-adrenoreceptor (alpha1-AR)-activated Ca2+ entry is coupled to both capacitative and non-capacitative pathways in A10 vascular smooth muscle cells by fura-2 fluorescence probe and conventional whole-cell patch clamp techniques. We found that both thapsigargin (TG) and phenylephrine (Phe) induced transient increase in cytoplasmic Ca2+ concentration ([Ca2+]i) in Ca2+-free medium, and subsequent addition of Ca2+ evoked a sustained [Ca2+]i rise. When the membrane potential was held at -60 mV, both TG and Phe activated inward currents, which were inhibited by GdCl3(Gd3+), 0Na+/0Ca2+ solution and 1-{beta[3-(4-mehtoxyphenyl)propoxy]-4-methoxypheneth-yl}-1H- imidazole hydro-chloride (SK&F96365), but not by nifedipine. When Ca2+ store was depleted by TG in Ca2+-free solution, Phe failed to further evoke [Ca2+]i rise. However, when capacitative Ca2+ entry was activated by TG in the medium containing Ca2+, 10 microM Phe further increased [Ca2+]i. At the same concentration, TG activated an inward cation current, subsequent addition of Phe also further induced an inward cation current. Furthermore, the amplitudes of [Ca2+]i increase and current density induced by Phe in the presence of TG were less than that induced by Phe alone. Our results suggest that both capacitative and non-capacitative Ca2+ entry pathways are involved in Ca2+ influx induced by activation of alpha1-AR in A10 vascular smooth muscle cells.  相似文献   

9.
Permeability changes induced by polylysines in rat spermatids   总被引:1,自引:0,他引:1  
High molecular weight (HMW, >15 kDa) but not low molecular weight (LMW, <15 kDa) polylysines (PLs) bound and induced permeability changes in rat spermatid plasma membranes, estimated by Mn2+ quenching of intracellular indo-1 fluorescence (K(1/2) = 3.3 +/- 0.5 microg/ml) and Co2+ quenching of intracellular calcein. The pharmacology of the Mn2+ entry pathway activated by HMW PL does not suggest that Ca2+ channels are involved in this phenomenon. Concentrations of HMW PL that induced divalent ion entry did not induce the entry of ethidium bromide, suggesting that HMW PL first bound and perturbed the plasma membrane structure inducing a non-specific increase in membrane permeability. High concentrations of HMW PL induced cell lysis (K(1/2) = 23 microg/ml). The binding of HMW PL, initially homogenous on the cell surface, subsequently progressed to a segregated pattern resembling a clustering phenomenon.  相似文献   

10.
The effect of capacitative Ca2+ entry on cytosolic free Ca2+ concentration ([Ca2+]c) was examined in calf pulmonary artery endothelial cells treated with thapsigargin. Restoration of extracellular Ca2+ evoked an overshoot in [Ca2+]c: the initial rate of Ca2+ influx was 12.4 +/- 0.5 nM/s as [Ca2+]c rose monoexponentially (time constant, tau = 36 +/- 2 s) to a peak (322 +/- 16 nM) before declining to 109 +/- 14 nM after 2000 s. Rates of Ca2+ removal from the cytosol were measured throughout the overshoot by recording the monoexponential decrease in [Ca2+]c after rapid removal of extracellular Ca2+. The time constant for recovery (tau rec decreased from 54 +/- 4 s when Ca2+ was removed after 10 s to its limiting value of 8.8 +/- 1.0 s when it was removed after 2000 s. The time dependence of the changes in tau rec indicate that an increase in [Ca2+]c is followed by a delayed (tau = 408 s) stimulation of Ca2+ removal, which fully reverses (tau approximately 185 s) after Ca2+ entry ceases. Numerical simulation indicated that the changes in Ca2+ removal were largely responsible for the overshooting pattern of [Ca2+]c. Because prolonged (30 min) Ca2+ entry did not increase the total 45Ca2+ content of the cells, an increased rate of Ca2+ extrusion across the plasma membrane most likely mediates the Ca2+ removal, and since it persists in the absence of extracellular Na+, it probably results from stimulation of a plasma membrane Ca2+ pump. We conclude that delayed stimulation of a plasma membrane Ca2+ pump by capacitative Ca2+ entry may protect cells from excessive increases in [Ca2+]c and contribute to oscillatory changes in [Ca2+]c.  相似文献   

11.
We investigated the putative roles of phospholipase C, polyphosphoinositides, and inositol 1,4,5-trisphosphate (IP(3)) in capacitative calcium entry and calcium release-activated calcium current (I(crac)) in lacrimal acinar cells, rat basophilic leukemia cells, and DT40 B-lymphocytes. Inhibition of phospholipase C with blocked calcium entry and I(crac) activation whether in response to a phospholipase C-coupled agonist or to calcium store depletion with thapsigargin. Run-down of cellular polyphosphoinositides by concentrations of wortmannin that block phosphatidylinositol 4-kinase completely blocked calcium entry and I(crac). The membrane-permeant IP(3) receptor inhibitor, 2-aminoethoxydiphenyl borane, blocked both capacitative calcium entry and I(crac). However, it is likely that 2-aminoethoxydiphenyl borane does not inhibit through an action on the IP(3) receptor because the drug was equally effective in wild-type DT40 B-cells and in DT40 B-cells whose genes for all three IP(3) receptors had been disrupted. Intracellular application of another potent IP(3) receptor antagonist, heparin, failed to inhibit activation of I(crac). Finally, the inhibition of I(crac) activation by or wortmannin was not reversed or prevented by direct intracellular application of IP(3). These findings indicate a requirement for phospholipase C and for polyphosphoinositides for activation of capacitative calcium entry. However, the results call into question the previously suggested roles of IP(3) and IP(3) receptor in this mechanism, at least in these particular cell types.  相似文献   

12.
M Rossato  A Nogara  M Merico  A Ferlin  C Foresta 《Steroids》1999,64(1-2):168-175
Steroid hormones influence cell functions by binding to intracellular receptors and then acting within the nucleus. There is now evidence that steroids affect cell functions also via interaction with plasma membrane receptors in a number of different cell types. In this regard, progesterone appears to be one of the most active steroids. In this paper, we evaluate the effects of progesterone on rat Leydig cell functions, determining variations of ion homeostasis and testosterone production. This steroid was able to effect a depolarization of the plasma membrane that was due to an influx of sodium (Na+) from the external medium since it was absent when extracellular Na+ was iso-osmotically substituted with choline chloride or sucrose. The determination of intracellular sodium concentration ([Na+]i) with the Na+ -sensitive fluorescent dye sodium-benzofuran-isophtalate (SBFI) confirmed these observations. Progesterone did not modify Leydig cell intracellular calcium concentration ([Ca2+]i) at any dose tested. Furthermore, using a cell impermeant progesterone conjugate, we demonstrated that progesterone was able to stimulate Leydig cell steroidogenesis in a dose-dependent manner. The exclusion of calcium (Ca2+) from the extracellular medium did not modify the depolarizing action of progesterone and its steroidogenetic effect while in Na+ -free medium (sucrose supplemented) progesterone-stimulated effects were completely blunted. Finally, using fluorescence microscopy with a fluorescein isothiocyanate-coupled cell impermeant progesterone conjugate, we identified plasma membrane binding sites for progesterone in rat Leydig cells. These results suggest that rat Leydig cells possess progesterone receptors located on the plasma membrane, which when occupied achieves a plasma membrane depolarization, dependent on an influx of Na+ from the external medium, and the subsequent activation of steroidogenesis.  相似文献   

13.
To evaluate the relationship between the vasocontractile effect of thiopental and the extra and intracellular sources of Ca2+, we analyzed both the contractile effect of the barbiturate on rat aortic rings and its ability to modify the intracellular calcium concentration in cultured rat aorta smooth muscle cells. Thiopental (10-310 microg/mL) contracted aortic rings only in the presence of extracellular Ca2+, and this effect was not blocked by verapamil or diltiazem. On the contrary, Ca2+ (0.1-3.1 mM) evoked contractions only when thiopental (100 microg/mL) was present. Although in calcium-free solution thiopental (100 microg/mL) did not contract aortic rings, it abolished the contractile effect of either phenylephrine (10(-6) M) or caffeine (10 mM). Finally, thiopental augmented the intracellular calcium concentration in cultured smooth muscle cells incubated either in the presence or absence of calcium. In conclusion, thiopental's vasocontractile effect depends on extracellular calcium influx, which is independent of L-calcium channels. The increase in intracellular Ca2+ concentration elicited by thiopental in Ca2+-free solution and its ability to block the effect of phenylephrine and caffeine suggest that this barbiturate can deplete intracellular pools of calcium. Therefore, the calcium entry pathway associated with the contractile effect of thiopental may correspond to the capacitative calcium entry model.  相似文献   

14.
We examined the roles of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) in calcium signaling using DT40 B lymphocytes, and a variant lacking the three IP3R isoforms (IP3R-KO). In wild-type cells, B cell receptor (BCR) stimulation activates a cation entry route that exhibits significantly greater permeability to Ba2+ than does capacitative calcium entry. This cation entry is absent in IP3R-KO cells. Expression of the type-3 IP3R (IP3R-3) in the IP3R-KO cells rescued not only agonist-dependent release of intracellular Ca2+, but also Ba2+ influx following receptor stimulation. Similar results were obtained with an IP3R-3 mutant carrying a conservative point mutation in the selectivity filter region of the channel (D2477E); however, an IP3R-3 mutant in which this same aspartate was replaced by alanine (D2477A) failed to restore either BCR-induced Ca2+ release or receptor-dependent Ba2+ entry. These results suggest that in DT40 B lymphocytes, BCR stimulation activates a novel cation entry across the plasma membrane that depends upon, or is mediated by, fully functional IP3R.  相似文献   

15.
In rat islets, progesterone caused a prompt concentration-dependent inhibition of glucose-stimulated insulin release with an IC50 of 10 microM at 8.4mM glucose. The inhibition was specific since both testosterone and 17beta-estradiol had no such effect. The degree of inhibition was similar in islets from male and female rats. The inhibition was not blocked in PTX-treated islets thus ruling out the Gi/Go proteins as mediators of the inhibition. Progesterone inhibited both glucose- and BayK-8644-stimulated insulin secretion in HIT-T15 cells and the IC50 vs. 10 mM glucose was also 10 microM. There was no effect on intracellular cyclic AMP concentration in the presence 0.2 and 10 mM glucose. Progesterone decreased [Ca2+]i under all conditions tested. The decrease in [Ca2+]i was due to blockade of the L-type voltage-dependent Ca2+ channels. Under Ca(2+)-free conditions, progesterone did not inhibit the stimulation of insulin release due to the combination of glucose, phorbol ester and forskolin. Thus blockade of Ca2+ entry appears to be the sole mechanism by which progesterone inhibits insulin release. As progesterone covalently linked to albumin had a similar inhibitory effect as progesterone itself, it is concluded that the steroid acts at the outer surface of the beta-cell plasma membrane. These effects would be classified as either AI or AIIb in the Mannheim classification of nongenomically initiated steroid actions.  相似文献   

16.
To screen for an effective antiviral compound which acts as a membrane fluidity modulator, dichotomous effects on human immunodeficiency virus type 1 (HIV-1) infection due to different treatments of several glycolipids and lipids were examined. Continuous treatment of infected cells with 40 microg ml(-1) fattiviracin FV-8, a neutral glycolipid isolated from Streptomycetes, inhibited HIV-1 infection by 96%, whereas pretreatment with 400 microg ml(-1) enhanced infectivity 4.7-fold. The glycolipid showed similar effects as glycyrrhizin; it inhibited infection by broad enveloped viruses, blocked cell-cell fusion, reduced the infectivity of treated virions and enhanced susceptibility to viral infection and cell-cell fusion of cells pretreated with high doses of the compound. Suppression and enhancement was correlated with decreased and increased fluidity of plasma membrane of the fattiviracin FV-8-treated cells. Restricted movement of membrane molecules might impede the formation of a wide fusion pore, and therefore be critical to the entry of viruses. Thus, this can be applied as a new strategy to inhibit viral infections.  相似文献   

17.
A preneoplastic variant of Syrian hamster embryo cells, sup(+), exhibits decreased endoplasmic reticulum calcium levels and subsequently undergoes apoptosis in low serum conditions (Preston, G. A., Barrett, J. C., Biermann, J. A., and Murphy, E. (1997) Cancer Res. 57, 537-542). This decrease in endoplasmic reticulum calcium appears to be due, at least in part, to reduced capacitative calcium entry at the plasma membrane. Thus we investigated whether inhibition of capacitative calcium entry per se could reduce endoplasmic reticulum calcium and induce apoptosis of cells. We find that treatment with either SKF96365 (30-100 microM) or cell-impermeant 1,2-bis(o-amino-5-bromophenoxy)ethane-N,N,N', N'-tetraacetic acid (5-10 mM) is able to induce apoptosis of cells in conditions where apoptosis does not normally occur. Because previous work has implicated vesicular trafficking as a mechanism of regulating capacitative calcium entry, we investigated whether disruption of vesicular trafficking could lead to decreased capacitative calcium entry and subsequent apoptosis of cells. Coincident with low serum-induced apoptosis, we observed an accumulation of vesicles within the cell, suggesting deregulated vesicle trafficking. Treatment of cells with bafilomycin (30-100 nM), an inhibitor of the endosomal proton ATPase, produced an accumulation of vesicles, decreased capacitative entry, and induced apoptosis. These data suggest that deregulation of vesicular transport results in reduced capacitative calcium entry which in turn results in apoptosis.  相似文献   

18.
H Takemura  H Ohshika 《Life sciences》1999,64(17):1493-1500
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.  相似文献   

19.
Sensing and refilling calcium stores in an excitable cell.   总被引:1,自引:0,他引:1  
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.  相似文献   

20.
Capacitative calcium entry in the nervous system   总被引:6,自引:0,他引:6  
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号