首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trinucleotide phosphoramidites that correspond to the codons of all 20 amino acids were synthesized in high yield in 5g scale. Precursors of those amidites--trinucleotide phosphotriesters--have been prepared using the phosphotriester approach without protection of the 3'-hydroxyl function. The structures of trinucleotide phosphotriesters and intermediates were confirmed by 1H- and 31P-NMR spectra, mass-spectra and by analysis of SPDE-hydrolysates of deprotected preparations. Purity of the target products has been confirmed by test reactions. The synthons have been used for automated synthesis of oligonucleotides and corresponding libraries by a phosphite-triester approach. A 54mer, containing 12 randomized internal bases, and a 72mer with 24 internal randomized bases have been synthesized.  相似文献   

2.
Pon RT  Yu S 《Nucleic acids research》2005,33(6):1940-1948
Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated.  相似文献   

3.
The approach to large-scale solid-phase synthesis of 3'-unprotected trinucleotide phosphotriesters has been developed. The trinucleotides have been synthesized in 5 g scale by phosphotriester approach using CPG with pore size 70A. Total yield of target products was 75-90%. The molar extinctions of trinucleotides at various wave-lengths were calculated; the experimental UV-spectra of trinucleotides show a good agreement with theoretical ones. The trinucleotides synthesized were used for synthesis of trinucleotide phosphoramidites - synthons for generation of DNA/peptide libraries.  相似文献   

4.
5.
2'-Deoxy-2'-N-phthaloyl nucleosides were prepared from arabino nucleosides by triflate displacement with phthalimide in the presence of DBU. The corresponding phosphoramidites suitable for automated oligonucleotide synthesis were also synthesized. The scalability of described procedures was demonstrated on a 100-g scale preparation of 2'-deoxy-2'-amino-C phosphoramidite.  相似文献   

6.
A new activator for the coupling of phosphoramidites to the 5'-hydroxyl group during oligonucleotide synthesis is introduced. The observed time to complete coupling is twice as fast with 4, 5-dicyanoimidazole (DCI) as the activator, compared with 1 H -tetrazole. The effectiveness of DCI is thought to be based on its nucleophilicity. DCI is soluble in acetonitrile up to 1.1 M at room temperature and can be used as the sole coupling activator during routine automated solid phase synthesis of oligonucleotides. The addition of 0.1 M N -methylimidazole to 0.45 M 1 H -tetrazole also results in higher product yields during oligonucleotide synthesis than observed with 1 H -tetrazole alone.  相似文献   

7.
Isalan M 《Nature protocols》2006,1(1):468-475
Randomized gene libraries may be constructed and screened to find novel candidates with particular functions, and the applications can range widely, from protein engineering to selecting new microRNAs. Here we describe a technique to construct gene libraries using semi-randomized weighted oligonucleotide synthesis and end-to-end ligation. This method makes it possible to search the combinatorial space around a particular nucleotide sequence for a greater number of positions than is possible with fully randomized oligonucleotides. As an alternative to full cassette construction, library mutations can also be introduced through 'round-the-world PCR' approaches. Construction of a randomized gene cassette and cloning can typically be achieved in 2 weeks. Therefore, these are rapid and convenient methods to generate successive generations of libraries for iterative selection and optimization.  相似文献   

8.
Generation of complex libraries of defined nucleic acid sequences can greatly aid the functional analysis of protein and gene function. Previously, such studies relied either on individually synthesized oligonucleotides or on cellular nucleic acids as the starting material. As each method has disadvantages, we have developed a rapid and cost-effective alternative for construction of small-fragment DNA libraries of defined sequences. This approach uses in situ microarray DNA synthesis for generation of complex oligonucleotide populations. These populations can be recovered and either used directly or immortalized by cloning. From a single microarray, a library containing thousands of unique sequences can be generated. As an example of the potential applications of this technology, we have tested the approach for the production of plasmids encoding short hairpin RNAs (shRNAs) targeting numerous human and mouse genes. We achieved high-fidelity clone retrieval with a uniform representation of intended library sequences.  相似文献   

9.
Brukner I  Tremblay GA  Paquin B 《BioTechniques》2002,33(4):874-6, 878, 880 passim
Here we describe a process for the generation of oligonucleotide libraries representative of a given nucleic acid. Starting from at random pool of DNA oligonucleotides, the technique selects only those that hybridize to the nucleic acid template. This selection yields a highly specific library that represents an oligonucleotide image of the chosen template. The novel quality of this approach is the generation of amplifiable oligonucleotide probes that are of unique length and are easily subjected to differential selection. Here we apply this technique to produce different genomic oligonucleotide libraries and show that these genomic oligonucleotide libraries do not cross-hybridize. Differential selection of these genomic oligonucleotide libraries produces oligonucleotides that can be used in the identification, characterzation, and isolation of nucleic acids.  相似文献   

10.
11.
A novel and efficient tagArray technology was developed that allows rapid identification of antibodies which bind to receptors with a specific expression profile, in the absence of biological information. This method is based on the cloning of a specific, short nucleotide sequence (tag) in the phagemid coding for each phage-displayed antibody fragment (phage-Ab) present in a library. In order to set up and validate the method we identified about 10,000 different phage-Abs binding to receptors expressed in their native form on the cell surface (10 k Membranome collection) and tagged each individual phage-Ab. The frequency of each phage-Ab in a given population can at this point be inferred by measuring the frequency of its associated tag sequence through standard DNA hybridization methods. Using tiny amounts of biological samples we identified phage-Abs binding to receptors preferentially expressed on primary tumor cells rather than on cells obtained from matched normal tissues. These antibodies inhibited cell proliferation in vitro and tumor development in vivo, thus representing therapeutic lead candidates.  相似文献   

12.
Gene synthesis is an emerging field which has widespread implications in synthetic biology and molecular biology. The field is constantly evolving which has led to key advances in oligonucleotide synthesis and gene synthesis technologies, with simplicity, cost effectiveness and high throughput. The miniaturization, multiplexing, microfluidic processing and the integrated microchip engineering will drive down cost and increase productivity without compromising DNA synthesis fidelity, whereas the gigantic amount of genome information provides infinite source of DNA elements and genes as raw material for synthetic biology. This article describes some of the recent patents on oligonucleotide synthesis and gene synthesis.  相似文献   

13.
The selection of nucleic acid sequences capable of specifically and efficiently hybridizing to target sequences is crucial to the success of many applications, including microarrays, PCR and other amplification procedures, antisense inhibition, ribozyme-mediated cleavage, and RNA interference (RNAi). Methods of selection using nucleotide sequence libraries have several advantages over rational approaches using defined sequences. However, the high complexity of completely random (degenerate) libraries and their high toxicity in cell-based assays make their use in many applications impractical. Gene-specific oligonucleotide libraries, which contain all possible sequences of a certain length occurring within a given gene, have much lower complexity and, thus, can significantly simplify and accelerate sequence screening. Here, we describe a new method for the preparation of gene-specific libraries using the ligation of randomized oligonucleotide probes hybridized adjacently on target polynucleotide templates followed by PCR amplification. We call this method random oligonucleotide ligated libraries (ROLL).  相似文献   

14.
A simple and efficient method utilizing in vivo recombination to create recombinant libraries incorporating the products of PCR amplification is described. This will be especially useful for generating large pools of randomly mutagenized clones after error-prone PCR mutagenesis. Here we investigate various parameters to optimize this approach and we demonstrate that as little as 1 pmole of PCR fragment can generate a library with greater than 104 clones in a single transformation without ligation.  相似文献   

15.
Randomized libraries are increasingly popular in protein engineering and other biomedical research fields. Statistics of the libraries are useful to guide and evaluate randomized library construction. Previous works only give the mean of the number of unique sequences in the library, and they can only handle equal molar ratio of the four nucleotides at a small number of mutation sites. We derive formulas to calculate the mean and variance of the number of unique sequences in libraries generated by cassette mutagenesis with mixtures of arbitrary nucleotide ratios. Computer program was developed which utilizes arbitrary numerical precision software package to calculate the statistics of large libraries. The statistics of library with mutations in more than 20 amino acids can be calculated easily. Results show that the nucleotide ratios have significant effects on these statistics. The more skewed the ratio, the larger the library size is needed to obtain the same expected number of unique sequences. The program is freely available at http://graphics.med.yale.edu/cgi-bin/lib_comp.pl.  相似文献   

16.
Combinatorial strategies offer the potential to generate and screen extremely large numbers of compounds and to identify individual molecules with a desired binding specificity or pharmacological activity. We describe a combinatorial strategy for oligonucleotides in which the library is generated and screened without using enzymes. Freedom from enzymes enables the use of oligonucleotide analogues. This dramatically extends the scope of both the compounds and the targets that may be screened. We demonstrate the utility of the method by screening 2'-O-Methyl and phosphorothioate oligonucleotide analogue libraries. Compounds have been identified that bind to the activated H-ras mRNA and that have potent antiviral activity against the human herpes simplex virus.  相似文献   

17.
A variety of furan-modified nucleoside phosphoramidite monomers has been prepared and efficiently incorporated into oligonucleotides. These take part in Diels-Alder reactions with fluorescent maleimides to give fluorescent-labeled oligonucleotides. This represents a strategy for oligonucleotide labeling that is orthogonal to amine-based methods.  相似文献   

18.

Background  

The use of small interfering RNAs (siRNAs) to silence target gene expression has greatly facilitated mammalian genetic analysis by generating loss-of-function mutants. In recent years, high-throughput, genome-wide screening of siRNA libraries has emerged as a viable approach. Two different methods have been used to generate short hairpin RNA (shRNA) libraries; one is to use chemically synthesized oligonucleotides, and the other is to convert complementary DNAs (cDNAs) into shRNA cassettes enzymatically. The high cost of chemical synthesis and the low efficiency of the enzymatic approach have hampered the widespread use of screening with shRNA libraries.  相似文献   

19.
The preparation of fully protected diisopropylamino-beta-cyanoethyl ribonucleoside phosphoramidites with regioisomeric purity greater than 99.95% is described. It is demonstrated that the combination of standard DNA protecting groups, 5'-O-DMT, N-Bz (Ade and Cyt), N-iBu (Gua), beta-cyanoethyl for phosphate, in conjunction with TBDMS for 2'-hydroxyl protection, constitutes a reliable method for the preparation of fully active RNA. Average stepwise coupling yields in excess of 99% were achieved with these synthons on standard DNA synthesizers. Two steps completely deprotect the oligoribonucleotide and workup is reduced to a fifteen minute procedure. Further, it is shown that the deprotected oligoribonucleotides are free from 5'-2' linkages. This methodology was applied to the chemical synthesis of a 24-mer microhelix, a 35-mer minihelix and two halves of a catalytic 'Hammerhead Ribozyme'. These oligoribonucleotides were directly compared in two distinct biochemical assays with enzymatically (T7 RNA polymerase) prepared oligoribonucleotides and shown to possess equal or better activity.  相似文献   

20.
Bis-phosphoimidazolides of an analogue of adenosine (in which ribose is replaced by an acyclic chain) and of two related analogues of guanosine undergo oligomerization in the presence of complementary polynucleotide templates. Data on the template- and nontemplate-directed reactions are presented, and the possible relevance to origins of life is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号