首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.

Background

DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes.

Results

The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog.

Conclusions

Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality.
  相似文献   

2.

Background

Genome variability can have a profound influence on the virulence of pathogenic microbes. The availability of genome sequences for two strains of the AIDS-associated fungal pathogen Cryptococcus neoformans presented an opportunity to use comparative genome hybridization (CGH) to examine genome variability between strains of different mating type, molecular subtype, and ploidy.

Results

Initially, CGH was used to compare the approximately 100 kilobase MAT a and MATα mating-type regions in serotype A and D strains to establish the relationship between the Log2 ratios of hybridization signals and sequence identity. Subsequently, we compared the genomes of the environmental isolate NIH433 (MAT a) and the clinical isolate NIH12 (MATα) with a tiling array of the genome of the laboratory strain JEC21 derived from these strains. In this case, CGH identified putative recombination sites and the origins of specific segments of the JEC21 genome. Similarly, CGH analysis revealed marked variability in the genomes of strains representing the VNI, VNII, and VNB molecular subtypes of the A serotype, including disomy for chromosome 13 in two strains. Additionally, CGH identified differences in chromosome content between three strains with the hybrid AD serotype and revealed that chromosome 1 from the serotype A genome is preferentially retained in all three strains.

Conclusion

The genomes of serotypes A, D, and AD strains exhibit extensive variation that spans the range from small differences (such as regions of divergence, deletion, or amplification) to the unexpected disomy for chromosome 13 in haploid strains and preferential retention of specific chromosomes in naturally occurring diploids.  相似文献   

3.
4.

Background

Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses.

Results

Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions.

Conclusions

Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
  相似文献   

5.
Recent segmental and gene duplications in the mouse genome   总被引:2,自引:0,他引:2       下载免费PDF全文

Background

The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (≥ 5 kb) and recent (≥ 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies.

Results

We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of 'unmapped' chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice.

Conclusion

Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the identified duplication content presented in this work. This data will also be relevant to the growing number of investigators who use the draft genome sequence for experimental design and analysis.
  相似文献   

6.
7.

Background

The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB) genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C), along with the genomes of laboratory strains (H37Rv and H37Ra), provides new insights on the mechanisms of adaptation of this bacterium to the human host.

Findings

The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms.

Conclusion

The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.  相似文献   

8.
9.

Key message

Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9.

Abstract

The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient ‘genetical genomics’ analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.  相似文献   

10.

Background

With the development of sequencing technologies, more and more sequence variants are available for investigation. Different classes of variants in the human genome have been identified, including single nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions. Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effects on humans. The absence of understanding is largely due to the lack of both biological data and computational resources.

Results

This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can predict the protein functional effects of both single and multiple mutations.

Conclusions

This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm.  相似文献   

11.
Hahn MW 《Genome biology》2007,8(7):R141-9

Background

Comparative genomic studies are revealing frequent gains and losses of whole genes via duplication and pseudogenization. One commonly used method for inferring the number and timing of gene gains and losses reconciles the gene tree for each gene family with the species tree of the taxa considered. Recent studies using this approach have found a large number of ancient duplications and recent losses among vertebrate genomes.

Results

I show that tree reconciliation methods are biased when the inferred gene tree is not correct. This bias places duplicates towards the root of the tree and losses towards the tips of the tree. I demonstrate that this bias is present when tree reconciliation is conducted on both multiple mammal and Drosophila genomes, and that lower bootstrap cut-off values on gene trees lead to more extreme bias. I also suggest a method for dealing with reconciliation bias, although this method only corrects for the number of gene gains on some branches of the species tree.

Conclusion

Based on the results presented, it is likely that most tree reconciliation analyses show biases, unless the gene trees used are exceptionally well-resolved and well-supported. These results cast doubt upon previous conclusions that vertebrate genome history has been marked by many ancient duplications and many recent gene losses.  相似文献   

12.
Zheng D 《Genome biology》2008,9(7):R105-13

Background

Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored.

Results

In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications.

Conclusion

The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences.  相似文献   

13.
Sequencing and analysis of an Irish human genome   总被引:1,自引:0,他引:1  

Background

Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

Results

Using sequence data from a branch of the European ancestral tree as yet unsequenced, we identify variants that may be specific to this population. Through comparisons with HapMap and previous genetic association studies, we identified novel disease-associated variants, including a novel nonsense variant putatively associated with inflammatory bowel disease. We describe a novel method for improving SNP calling accuracy at low genome coverage using haplotype information. This analysis has implications for future re-sequencing studies and validates the imputation of Irish haplotypes using data from the current Human Genome Diversity Cell Line Panel (HGDP-CEPH). Finally, we identify gene duplication events as constituting significant targets of recent positive selection in the human lineage.

Conclusions

Our findings show that there remains utility in generating whole genome sequences to illustrate both general principles and reveal specific instances of human biology. With increasing access to low cost sequencing we would predict that even armed with the resources of a small research group a number of similar initiatives geared towards answering specific biological questions will emerge.  相似文献   

14.
15.
Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.MANY eukaryotes of biomedical and agricultural importance—including humans, other mammals, birds, and Drosophila—are heterogametic. Their sex chromosomes differ drastically in size and genetic composition. In species with X and Y chromosomes, males carry only one copy of each X-linked gene. This poses a serious challenge for experimental geneticists, because males inheriting a mutation in a vital X-linked gene die before they can be used in genetic crosses. In fact, the hemizygosity of X-linked genes in males has been a significant barrier to the functional analysis of many X-linked genes and is largely responsible for the poor genetic characterization of X chromosomes relative to autosomes in most organisms.The lethality of X-linked mutations can be rescued by providing a wild-type copy of the mutated gene elsewhere in the genome. This can be accomplished with a transgenic construct if the molecular identity of the mutated gene is known. In many cases, however, the mutated gene has not been identified and it is necessary to provide wild-type function with a multigene interchromosomal duplication, i.e., a segment of the X inserted in another chromosome. If the proximal and distal extents of the duplicated segment are known, phenotypic rescue maps the mutated gene to the defined X chromosome region.Multigene deletions can also be used to map X-linked mutations by complementation, but crosses between individuals carrying deletions and X-linked lethal mutations are impossible without rescuing the lethality of either the deletion or the lethal mutation in males. Projects at the Bloomington Drosophila Stock Center and elsewhere (Parks et al. 2004; Ryder et al. 2007) have generated large collections of deletions with molecularly defined breakpoints in Drosophila melanogaster, but the utility of the X deletions is limited without duplications of the corresponding chromosomal regions.Duplications are potentially important for gene discovery. Identifying sets of genes involved in the same cellular process is a major focus of functional genomics research and this can be accomplished genetically by identifying dosage-sensitive modifiers of mutant phenotypes. Often, increasing or decreasing the copy number of a gene will enhance or suppress the phenotype associated with mutating another gene involved in the same process. Screening collections of deletions is a popular way to identify interacting genes in Drosophila (for examples, see Seher et al. 2007; Zhao et al. 2008; Aerts et al. 2009; Salzer et al. 2010) and was a major impetus for the assembly of the Bloomington Stock Center “Deficiency Kit,” which provides maximal coverage of the genome with the fewest deletions. Though dosage-sensitive modifiers could also be identified using increased gene dosage, the use of duplications in enhancer and suppressor screens remains largely unexplored. Assembling sets of duplications providing efficient genomic coverage would likely popularize this experimental approach.The size of duplicated segments determines how duplication chromosomes are used experimentally. Small duplicated segments allow high resolution gene mapping, but they are not suitable for other purposes. Only large duplicated segments are capable of rescuing the lethality of sizable multigene X deletions. Likewise, large duplicated segments provide efficiency in initially localizing mutations and identifying dosage-dependent modifiers. Despite their usefulness, interchromosomal duplications of large segments are among the hardest chromosomal rearrangements to isolate. In Drosophila, many existing duplications were recovered fortuitously as three-breakpoint aberrations following irradiation, but such rearrangements are rare and difficult to identify in screens. Other duplications were methodically constructed from preexisting rearranged chromosomes. This approach works well when it is possible, but it can be used only when progenitor aberrations with appropriate breakpoints are available. Because of these difficulties, the selection of duplication strains generated by Drosophila workers over the past several decades is not satisfactory for many purposes. The duplications are often difficult to use experimentally, their breakpoints are sparsely distributed along the X chromosome and only roughly mapped, and substantial gaps in coverage exist. Obviously, improved duplication resources are needed.Here we present the methodology and progress of a project at the Bloomington Drosophila Stock Center to construct interchromosomal duplications of large, megabase-scale X segments. Our approach builds on the long history of manipulating Drosophila chromosomes in vivo (Novitski and Childress 1976; Ashburner et al. 2005), but we have eliminated the need for preexisting aberrations by generating progenitor chromosomes using the FLP-FRT system. Indeed, this site-specific recombination system has had an enormous impact on the ability of fly geneticists to engineer many kinds of novel chromosomes (Golic and Golic 1996; Parks et al. 2004; Ryder et al. 2007). We will demonstrate how we have combined FLP-mediated recombination and other chromosome manipulation techniques to produce Y-linked duplications of large X segments. As we will show, appending X segments to Y chromosomes rather than autosomes has advantages both for the synthesis and experimental use of X duplications.To date, we have generated a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. We anticipate completion of the project within the coming year. Using these duplications, mutations and genetic modifiers can be mapped first to large X intervals using a tiling set of the largest duplicated segments and then to small chromosome intervals using subsets of the duplications. These duplications will also facilitate deletion mapping. The creation of a set of stocks providing complete duplication coverage and extensive breakpoint subdivision of the X chromosome in a consistent genetic background will remove an impediment to investigating the functions of X-linked genes that has frustrated generations of Drosophila geneticists.  相似文献   

16.

Background

Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay.

Results

266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators. Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour.

Conclusion

The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.  相似文献   

17.
18.

Background

The orderly progression through mitosis is regulated by the Anaphase-Promoting Complex (APC), a large multiprotein E3 ubiquitin ligase that targets key cell-cycle regulators for destruction by the 26 S proteasome. The APC is composed of at least 11 subunits and associates with additional regulatory activators during mitosis and interphase cycles. Despite extensive research on APC and activator functions in the cell cycle, only a few components have been functionally characterized in plants.

Results

Here, we describe an in-depth search for APC subunits and activator genes in the Arabidopsis, rice and poplar genomes. Also, searches in other genomes that are not completely sequenced were performed. Phylogenetic analyses indicate that some APC subunits and activator genes have experienced gene duplication events in plants, in contrast to animals. Expression patterns of paralog subunits and activators in rice could indicate that this duplication, rather than complete redundancy, could reflect initial specialization steps. The absence of subunit APC7 from the genome of some green algae species and as well as from early metazoan lineages, could mean that APC7 is not required for APC function in unicellular organisms and it may be a result of duplication of another tetratricopeptide (TPR) subunit. Analyses of TPR evolution suggest that duplications of subunits started from the central domains.

Conclusions

The increased complexity of the APC gene structure, tied to the diversification of expression paths, suggests that land plants developed sophisticated mechanisms of APC regulation to cope with the sedentary life style and its associated environmental exposures.  相似文献   

19.
20.

Background

Asthma is a complex genetic disease with more than 20 genome-wide scans conducted so far. Regions on almost every chromosome have been linked to asthma and several genes have been associated. However, most of these associations are weak and are still awaiting replication.

Methods

In this study, we conducted a second-stage genome-wide scan with 408 microsatellite markers on 201 asthma-affected sib pair families and defined clinical subgroups to identify phenotype-genotype relations.

Results

The lowest P value for asthma in the total sample was 0.003 on chromosome 11, while several of the clinical subsets reached lower significance levels than in the overall sample. Suggestive evidence for linkage (p = 0.0007) was found for total IgE on chromosomes 1, 7 and again on chromosome 11, as well as for HDM asthma on chromosome 12. Weaker linkage signals could be found on chromosomes 4 and 5 for early onset and HDM, and, newly described, on chromosome 2 for severe asthma and on chromosome 9 for hay fever.

Conclusions

This phenotypic dissection underlines the importance of detailed clinical characterisations and the extreme genetic heterogeneity of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号