首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human lymphocytes low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of sparsely ionizing X-rays. Because of the concern with the carcinogenic effects of low doses of -particles from radon in homes, experiments were carried out to see if low doses of X-rays could also decrease the yield of chromosomal aberrations induced by subsequent exposure to radon. Human peripheral blood lymphocytes were irradiated with low doses of X-rays (2 cGy) at 48 h of culture, exposed to radon at 72 h of culture, and analyzed for the presence of chromatid aberrations at subsequent intervals. The frequency of chromatid aberrations induced by radon alone increased with time after exposure, indicating exaggerated differences in the stage sensitivity of cell cycle stages to high-LET radiation. Furthermore, the numbers of aberrations per cell did not follow a Poisson distribution but were over dispersed, as might be expected since high-LET radiations have a high relative biological effectiveness compared with low-LET radiations. Nevertheless, lymphocytes exposed to 2 cGy of X-rays before radon exposure contained approximately one-half the number of chromatid deletions compared with lymphocytes treated with radon alone and analzed at the same time. Thus, the putative chromosomal repair mechanism induced by low doses of sparsely ionizing radiation is also effective in reducing chromosomal aberrations induced by radon, which hitherto had been thought to be relatively independent of repair processes.  相似文献   

2.
Almost all of the data on the biological effects of ionizing radiation come from studies of high doses. However, the human population is unlikely to be exposed to such doses. Regulatory limits for radiation exposure are based on the linear no-threshold model, which predicts that the relationship between biological effects and radiation dose is linear, and that any dose has some effect. Chromosomal changes are an important effect of ionizing radiation because of their role in carcinogenesis. Here we exposed pKZ1 mice to single whole-body X-radiation doses as low as 1 microGy. We observed three different phases of response: (1) an induction of inversions at ultra-low doses, (2) a reduction below endogenous inversion frequency at low doses, and (3) an induction of inversions again at higher doses. These results do not fit a linear no-threshold model, and they may have implications for the way in which regulatory standards are presently set and for understanding radiation effects.  相似文献   

3.
4.
It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01–0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins.  相似文献   

5.
Ron E  Brenner A 《Radiation research》2010,174(6):877-888
The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. The aim of this review is to evaluate the effects of high- and low-dose radiation on benign structural and functional diseases of the thyroid. We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate- to high-dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation, and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. After a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades after exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak, and significant radiation effects were most often observed after high doses, particularly for hypothyroidism. A significant radiation dose-response relationship was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties encountered in studying these diseases.  相似文献   

6.
In view of modern knowledge and concepts about components, function and mechanisms of response of cell molecular structures to damaging effects, response which is generating specialized modules of reactions, it is shown that main components of the mechanism of maintenance of genome constancy at ionizing radiation exposure are checkpoints of cell cycle, DNA repair and apoptosis. They operate under the control of a genetic system at participation of Tp53 gene, corresponding protein and of regulatory networks formed by cascades of mitogen-activated protein kinases (MAPK). At ionizing radiation exposure the MAPK special modules participate in formation of radiation effect: ERK 1/2 (extracellular signal-regulated kinase 1 and 2), JNK/SAPK (c-Jun N-terminal kinase/stress activated protein kinase) and p38 MAPK. Executing physiological functions of maintenance of normal life activity of cells, they do not lose this capacity after exposure to ionizing radiation, participating in formation of radiation effect in a wide range of doses, and are inactivated only by exposure to very high doses. It is concluded that in light of the modern data the main problem is not a problem of mechanisms of biological effect of ionizing radiation but a problem of biological mechanisms of radiation exposure.  相似文献   

7.
One of the achievements of the modern radiation ecology is the preparation and application of stable eukariotic cell lines to solve various problems occurring under exposure to ionizing radiation, especially to low doses. The detection of onco-fetal protein--tenascin in different embryonic and tumor cells of humans and animals supposes the probability of appropriate gene expression in lymphoid cells, including hybridomal cells. Using the immunochemical method, the study of tenascin expression in two mouse hybridomal lines was carried out. Tenascin was revealed in hybridomal lines MLC-1 and K-48. Further hybridomal cell lines were exposed to X-ray radiation (120 KV) with doses 2.10,15 cGy. The obtained results demonstrated the sensitivity of tenascin expression to low doses of ionizing radiation, that may be used as a convenient model of studying of genotoxic effects of various damaging ionizing agents on a cell level.  相似文献   

8.
9.
The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.  相似文献   

10.
A methodology for predicting the expected combined stochastic radiobiological effects of sequential exposure to different ionizing radiations is used to arrive at a methodology for predicting the radiobiological effects of simultaneous exposure. Both methodologies require developing additive-damage dose-effect models. Additive-damage dose-effect models are derived assuming (a) each radiation comprised by the combined exposure produces initial damage called critical damage that could lead to the radiobiological effect of interest; (b) doses of different radiations that lead to the same level of radiobiological effect (or risk) can be viewed as producing the same amount of critical damage and being indistinguishable as far as the effects of subsequently administered radiation. Derived dose-effect functions that describe the risk per individual, conditional on radiation dose, are called risk functions. The methodologies allow the use of known radiation-specific risk functions to derive risk functions for combined effects of different radiations. The risk functions for combined exposure to different radiations are called global risk functions. For sequential exposures to different ionizing radiations, the global risk functions derived depend on how individual radiation doses are ordered. Global risk functions can also differ for sequential and simultaneous exposure. The methodologies are used to account for some previously unexplained radiobiological effects of combined exposure to high and low linear-energy-transfer radiations.  相似文献   

11.

Background

High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation.

Principal Findings

We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation.

Conclusions

Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.  相似文献   

12.
Despite the long history of radiation hormesis and the public health concerns with low-level exposures to ionizing radiation, there has been surprisingly little formal evaluation of whether hormetic effects are displayed with respect to radiation exposure and cancer incidence (i.e., reduced cancer risk at low radiation doses compared to controls, enhanced cancer risk at higher doses) until relatively recently. This paper reviews data relevant to the question of radiation hormesis and cancer with particular emphasis on experimental studies in animal models exposed to low levels of ionizing radiation. Data exist that provide evidence both consistent with and/or supportive of radiation hormesis. Other biomedical research provides potentially important mechanistic insight: low dose exposures have the capacity to activate immune function to prevent the occurrence of tumor development and metastasis; low doses of radiation have been shown to reduce mutagenic responses and induce endogenous antioxidant responses. These findings are consistent with epidemiological data suggesting an inverse relationship between background radiation and cancer incidence and with occupational epidemiological investigations in which low-dose exposure groups display markedly lower standardized mortality rates than the referent or control group.  相似文献   

13.
Understanding how human organs respond to ionizing radiation (IR) at a systems biology level and identifying biomarkers for IR exposure at low doses can help provide a scientific basis for establishing radiation protection standards. Little is known regarding the physiological responses to low dose IR at the metabolite level, which represents the end-point of biochemical processes inside cells. Using a full thickness human skin tissue model and GC-MS-based metabolomic analysis, we examined the metabolic perturbations at three time points (3, 24 and 48 h) after exposure to 3, 10 and 200 cGy of X-rays. PLS-DA score plots revealed dose- and time-dependent clustering between sham and irradiated groups. Importantly, delayed metabolic responses were observed at low dose IR. When compared with the high dose at 200 cGy, a comparable number of significantly changed metabolites were detected 48 h after exposure to low doses (3 and 10 cGy) of irradiation. Biochemical pathway analysis showed perturbations to DNA/RNA damage and repair, lipid and energy metabolisms, even at low doses of IR.  相似文献   

14.
Forty-two children exposed to ionizing radiation in prenatal period and 15 children of control group were examined in the remote terms after the accident using the method of differential G-staining of chromosomes in lymphocytes of peripheral blood. It was found that the average group rate of aberrant cells and chromosome aberrations was reliably higher in the children exposed in utero compared to control. Long-term cytogenetic consequences of the pre-natal exposure were characterized by prevalence of aberrations of a chromosome type, mainly stable chromosome lesions. At chronic exposure to low doses of ionizing radiation the increase in the rate both stable and unstable chromosome aberrations.  相似文献   

15.
Experiments performed in laboratory animals suggest that ionizing radiation can induce DNA damage in the germ cells of exposed individuals and lead to various deleterious effects in their progeny, including miscarriage, low birth weight, congenital abnormalities and perhaps cancer. However, no clear evidence for such effects has been found in epidemiological studies of people exposed to radiation. The predicted risks of hereditary effects of any kinds resulting from parental exposure to relatively low doses of ionizing radiation remain very low, compared to the spontaneous risks in the absence of irradiation. Irradiation of the mouse embryo can lead to various effects (lethality, growth retardation, congenital abnormalities), depending on the period of gestation at which irradiation occurs. In humans, prenatal irradiation has only been exceptionally associated with congenital abnormalities, but irradiation between weeks 8-25 has been shown to be able to induce severe mental retardation. Although being not proven, the risk of developing a childhood cancer following prenatal irradiation may also not be excluded. Like for genetic effects, the risk of adverse effects following exposure of the embryo to relatively low doses remains quite low compared to the natural risks.  相似文献   

16.
Our current knowledge of the mechanisms underlying the induction of bystander effects by low doses of high or low LET ionizing radiation is reviewed. The question of what actually constitutes a protective effect is discussed in the context of adaptive (often referred to as hormetic or protective) responses. Finally the review considers critically, how bystander effects may be related to observed adaptive responses or other seemingly protective effects of low doses exposures. Bystander effects induce responses at the tissue level, which are similar to generalized stress responses. Most of the work involving low LET radiation exposure discussed in the existing literature measures a death response. Since many cell populations carry damaged cells without being exposed to radiation (so-called "background damage"), it is possible that low doses exposures cause removal of cells carrying potentially problematic lesions, prior to exposure to radiation. This mechanism could lead to the production of "U-shaped" or hormetic dose-response curves. The level of adverse, adaptive or apparently beneficial response will be related to the background damage carried by the original cell population, the level of organization at which damage or harm are scored and the precise definition of "harm". This model may be important when attempting to predict the consequences of mixed exposures involving low doses of radiation and other environmental stressors.  相似文献   

17.
Empirical information on the effects of low doses of ionizing radiation is beset by severe limitations. Theoretical considerations of biophysics can guide the analysis of epidemiological data by indicating certain dose-response relations or eliminating others. Thus, it can be shown that at low doses there must be proportionality between dose and effect on non-interacting cells and that one must anticipate different dose-effect relations upon exposure to markedly different types of radiation.  相似文献   

18.
Studying of the effects of low doses of γ-irradiation is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. The goal of this work is to identify changes of lifespan and expression stress-sensitive genes in Drosophila melanogaster, exposed to low doses of γ-irradiation (5 – 40 cGy) on the imaginal stage of development. Although some changes in life extensity in males were identified (the effect of hormesis after the exposure to 5, 10 and 40 cGy) as well as in females (the effect of hormesis after the exposure to 5 and 40 cGy), they were not caused by the organism “physiological” changes. This means that the observed changes in life expectancy are not related to the changes of organism physiological functions after the exposure to low doses of ionizing radiation. The identified changes in gene expression are not dose-dependent, there is not any proportionality between dose and its impact on expression. These results reflect nonlinear effects of low dose radiation and sex-specific radio-resistance of the postmitotic cell state of Drosophila melanogaster imago.  相似文献   

19.
Over the past 20 years there has been increasing evidence that cells and the progeny of cells surviving a very low dose of ionizing radiation [micro-mGy] can exhibit a wide range of non-monotonic effects such as adaptive responses, low dose hypersensitivity and other delayed effects. These effects are inconsistent with the expected dose-response, when based on extrapolation of high dose data and cast doubt on the reliability of extrapolating from high dose data to predict low dose effects. Recently the cause of many of these effects has been tentatively ascribed to so-called "bystander effects". These are effects that occur in cells not directly hit by an ionizing track but which are influenced by signals from irradiated cells and are thus highly relevant in situations where the dose is very low. Not all bystander effects may be deleterious although most endpoints measured involve cell damage or death. In this commentary, we consider how these effects impact the historical central dogma of radiobiology and radiation protection, which is that DNA double strand breaks are the primary radiation-induced lesion which can be quantifiably related to received dose and which determine the probability that a cancer will result from a radiation exposure. We explore the low dose issues and the evidence and conclude that in the very low dose region, the primary determinant of radiation exposure outcome is the genetic and epigenetic background of the individual and not solely the dose. What this does is to dissociate dose from effect as a quantitative relationship, but it does not necessarily mean that the effect is ultimately unrelated to DNA damage. The fundamental thesis we present is that at low doses fundamentally different mechanisms underlie radiation action and that at these doses, effect is not quantitatively related to dose.  相似文献   

20.
The effect of low doses of ionizing and nonionizing radiation on the radiation response of yeast Saccharomyces cerevisiae toward ionizing and nonionizing radiation was studied. The wild-type strain D273-10B on exposure to 54 Gy gamma radiation (resulting in about 10% cell killing) showed enhanced resistance to subsequent exposure to UV radiation. This induced UV resistance increased with the incubation time between the initial gamma radiation stress and the UV irradiation. Exposure to low doses of UV light on the other hand showed no change in gamma or UV radiation response of this strain. The strains carrying a mutation at rad52 behaved in a way similar to the wild type, but with slightly reduced induced response. In contrast to this, the rad3 mutants, defective in excision repair, showed no induced UV resistance. Removal of UV-induced pyrimidine dimers in wild-type yeast DNA after UV irradiation was examined by analyzing the sites recognized by UV endonuclease from Micrococcus luteus. The samples that were exposed to low doses of gamma radiation before UV irradiation were able to repair the pyrimidine dimers more efficiently than the samples in which low gamma irradiation was omitted. The nature of enhanced repair was studied by scoring the frequency of induced gene conversion and reverse mutation at trp and ilv loci respectively in strain D7, which showed similar enhanced UV resistance induced by low-dose gamma irradiation. The induced repair was found to be essentially error-free. These results suggest that irradiation of strain D273-10B with low doses of gamma radiation enhances its capability for excision repair of UV-induced pyrimidine dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号