首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.  相似文献   

2.
Huang XQ  Wei ZM 《Plant cell reports》2004,22(11):793-800
An efficient maize regeneration system was developed using mature embryos. Embryos were removed from surface-sterilized mature seeds and sliced into halves. They were used as explants to initiate callus on induction medium supplemented with 4.0 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D). The induction frequency of primary calli was over 90% for all inbred lines tested. The primary calli were then transferred onto subculture medium supplemented with 2.0 mg l–1 2,4-D. Following two biweekly subcultures, embryogenic calli were formed. Inclusion of a low concentration (0.2 mg l–1) of 6-benzylaminopurine (BA) in the subculture medium significantly promoted the formation of embryogenic callus. The addition of silver nitrate (10 mg l–1) also supported an increased frequency of embryogenesis. The embryogenic callus readily formed plantlets on regeneration medium supplemented with 0.5 mg l–1 BA. The regenerated plantlets were transferred to half-strength Murashige and Skoog medium supplemented with 0.6 mg l–1 indole-3-butyric acid to develop healthy roots. The regenerated plantlets were successful on transfer to soil and set seed. Using this system, plantlets were regenerated from seven elite maize inbred lines. The frequency of forming green shoots ranged from 19.8% to 32.4%. This efficient regeneration system provides a solid basis for genetic transformation of maize.Abbreviations BA 6-Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - IBA Indole-3-butyric acid - KT KinetinCommunicated by M.C. Jordan  相似文献   

3.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.  相似文献   

4.
Mutations in the maize gene sugary2 (su2) affect starch structure and its resultant physiochemical properties in useful ways, although the gene has not been characterized previously at the molecular level. This study tested the hypothesis that su2 codes for starch synthase IIa (SSIIa). Two independent mutations of the su2 locus, su2-2279 and su2-5178, were identified in a Mutator-active maize population. The nucleotide sequence of the genomic locus that codes for SSIIa was compared between wild type plants and those homozygous for either novel mutation. Plants bearing su2-2279 invariably contained a Mutator transposon in exon 3 of the SSIIa gene, and su2-5178 mutants always contained a small retrotransposon-like insertion in exon 10. Six allelic su2 mutations conditioned loss or reduction in abundance of the SSIIa protein detected by immunoblot. These data indicate that su2 codes for SSIIa and that deficiency in this isoform is ultimately responsible for the altered physiochemical properties of su2 mutant starches. A specific starch synthase isoform among several identified in soluble endosperm extracts was absent in su2-2279 or su2-5178 mutants, indicating that SSIIa is active in the soluble phase during kernel development. The immediate structural effect of the su2 mutations was shown to be increased abundance of short glucan chains in amylopectin and a proportional decrease in intermediate length chains, similar to the effects of SSII deficiency in other species.  相似文献   

5.
From 2000 to 2003 a range of Farm Scale Evaluation (FSE) trials were established in the UK to assess the effect of the release and management of herbicide tolerant (HT) crops on arable weeds and invertebrates. The FSE trials for maize were also used to investigate crop-to-crop gene flow and to develop a statistical model for the prediction of gene flow frequency that can be used to evaluate current separation distance guidelines for GM crops. Seed samples were collected from the non-GM half of 55 trial sites and 1,055 were tested for evidence of gene flow from the GM HT halves using a quantitative PCR assay specific to the HT (pat) gene. Rates of gene flow were found to decrease rapidly with increasing distance from the GM source. Gene flow was detected in 30% of the samples (40 out of 135) at 150 m from the GM source and events of GM to non-GM gene flow were detected at distances up to and including 200 m from the GM source. The quantitative data were subjected to statistical analysis and a two-step model was found to provide the best fit for the data. A dynamic whole field model predicted that a square field (150 m x 150 m in size) of grain maize would require a separation distance of 3 m for the adjacent crop to be below a 0.9% threshold (with <2% probability of exceeding the threshold). The data and models presented here are discussed in the context of necessary separation distances to achieve various possible thresholds for adventitious presence of GM in maize.  相似文献   

6.
Summary In wild-type Scopolia parvilfora (Solanaceae) tissues, only the roots express the enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53), which is the first specific precursor of the tropane alkaloids. Moreover, the tropanane alkaloid levels were the highest in the root (0.9 mg g−1 on a dry weight basis), followed by the stem and then the leaves. We metabolically engineered S. parviflora by introducing the tobacco pmt gene into its genome by a binary vector system that employs disarmed Agrobacterium rhizogenes. The kanamycin-resistant hairy root lines were shown to bear the pmt gene and to overexpress its mRNA and protein product by at least two-fold, as determined by polymerase chain reaction (PCR) and Northern and Western blottings, respectively. The transgenic lines also showed higher PMT activity and were morphologically aberrant in terms of slower growth and the production of lateral roots. The overexpression of pmt markedly elevated the scopolamine and hyoscyamine levels in the transgenic lines that showed the highest pmt mRNA and PMT protein levels. Thus, overexpression of the upstream regulator of the tropane alkaloid pathway enhanced the biosynthesis of the final product. These observations may be useful in establishing root culture systems that generate large yields of tropane alkaloids. These authors contributed equally to this paper (co-first authors).  相似文献   

7.
Liu T  Zhang J  Wang M  Wang Z  Li G  Qu L  Wang G 《Plant cell reports》2007,26(12):2091-2099
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Aluminum (Al) affects numerous physiological processes in plants. However, Al tolerance mechanisms mediated by increased synthesis of organic acids (OAs) have been outlined recently. In this study, we examined the role of OAs in the short (1–8 h) and long-term (4 days) Al tolerance in maize seedlings. Exposure to Al stress for 4 days results in a rapid inhibition of root growth. Al induced morphological changes in the maize roots, especially at a higher solution of Al concentration (1,000 μM Al). The increase in Al accumulation in roots, including strongly elevated levels of Al accumulated in root cell walls suggests that Al tolerance in maize is mediated in part by higher accumulation of Al in the roots. The enhanced citrate exudation, which was only observed at 1,000 μM Al may lead to detoxification of Al by formation of OA–Al complexes in the root apoplast. This mechanism has been suggested to play a significant role in Al resistance response in maize. The short-term responses underlying internal detoxification via OA-chelators were also investigated. Succinate, malate, citrate and total root OA contents decreased markedly, 2 h after the Al exposure. At 4 and 8 h time points, OA contents increased or remained unchanged, except for that of malate which decreased. The level of OAs in shoots, on the other hand, showed alterations that were less pronounced in response to Al. Specifically, the citrate and total OA concentrations significantly increased at 4 h, but showed a pronounced decrease at the 8 h time point. Based on our findings, we propose that multiple responses, including Al exclusion by Al accumulation in root cells and citrate efflux, may contribute towards higher Al resistance in maize. The rapid OA changes in responses to short-term Al treatment may not be responsible for Al tolerance. However, increased OA synthesis observed in this study may be involved in diminishing the stress triggered by Al. The molecular aspects underlying Al resistance mechanism via Al-induced expression of the enzymes catalyzing OA synthesis and metabolism remain to be elucidated.  相似文献   

9.
Zhang Z  Qiu F  Liu Y  Ma K  Li Z  Xu S 《Plant cell reports》2008,27(12):1851-1860
In vivo haploid production induced by inducer lines derived from Stock 6 is widely used in breeding program of maize (Zea mays L.), but the mechanisms behind have not yet been fully understood. In this study, average frequency of haploid induction in four inbred lines by Stock 6-derived inducer line HZI1 was above 10%. About 0.2% kernels from the cross Hua24 x HZI1 had mosaic endosperm showing yellow shrunken parts from Hua24 to normal parts with purple aleurone from HZI1. Individual lagged chromosomes and micronuclei were observed in mitotic cells of ovules pollinated by HZI1. Above 56.4% of the radicles from the kernels with purple aleurone and colorless embryos were mixoploid (2n = 9-21), and more than 45.22% cells were haploid cells (2n = 10) in three crosses. More than 62.5% of the radicles from the kernels with purple aleurone and purple embryos were mixoploid (2n = 9-21) having 54.27% cells with 2n = 20. SSR analysis showed that all haploids from the cross Hua24 x HZI1 shared the same genomic compositions as Hua24 except for plants Nos. 862 and 857 with some polymorphic DNA bands. The results revealed that chromosome elimination after fertilization caused the haploid production in maize.  相似文献   

10.
Southern corn rust (SCR) is a fungal disease caused by Puccinia polysora Underw, which can infect maize and may result in substantial yield losses in maize production. The maize inbred line Qi319 carries the SCR resistance gene RppQ. In order to identify molecular markers linked to the RppQ gene, several techniques were utilized including random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and amplified fragment length polymorphism (AFLP). In addition, sequence characterized amplified region (SCAR) techniques combined with bulked segregant analysis (BSA) were used. Seven RAPD markers, eight SSR markers, and sixty-three AFLP primer combinations amplified polymorphisms between two parents and two bulk populations. A large F2 population was used for genetic analysis and for fine mapping of the RppQ gene region. One AFLP polymorphic band, M-CAA/E-AGC324, was converted to a SCAR marker, MA7, which was mapped to a position 0.46 cM from RppQ. Finally, the RppQ gene was mapped between the SCAR marker MA7 and the AFLP marker M-CCG/E-AGA157 with distances of 0.46 and 1.71 cM, respectively.  相似文献   

11.
12.
The properties were compared for maize nuclear and mitochondrial DNA topoisomerases I (topo I). Some differences in their ability to bind to single-stranded DNA were revealed. Mitochondrial topo I was active only in the presence of Mg2+, whereas the activity of the nuclear enzyme did not completely depend on Mg2+, although being essentially stimulated in the presence of Mg2+. The mitochondrial enzyme covalently bound to the 5′ DNA end, as unique to prokaryotic topo I. The nuclear enzyme, like all eukaryotic topo I, covalently bound to the 3′ DNA end. A search for homologous sequences in several databases revealed genes probably encoding mitochondrial topo I in other higher plants. Using cDNA sequencing and in silico analysis, an orthologous gene was revealed in the maize genome. The gene was strongly homologous to the genes encoding prokaryotic topo I, which could explain the differences in properties between mitochondrial and nuclear topo I from maize. The presence of prokaryotic topo I in mitochondria of higher plants is interesting and important for studying the evolution of these plant organelles and the mechanisms of mitochondrial genome expression.  相似文献   

13.
Comparative study about the salt-induced oxidative stress and lipid composition has been realised in primary root tissues for two varieties of maize (Zea mays L.) in order to evaluate their responses to salt stress. The root growth, root water content (WC), hydrogen peroxide (H2O2) generation, lipid peroxidation, membrane stability index and the changes in the profile of fatty acids composition were investigated. Salinity impacts in term of root growth, water content, H2O2 generation, lipid peroxidation and membrane destabilisation were more pronounced in primary roots of Aristo than in those of Arper indicating more sensitivity of the first variety. It was confirmed by gas chromatography that the composition of fatty acids in roots of both varieties was constituted mainly by 16:0 and 18:0 as major saturated fatty acids and 18:1ω9, 18:2ω6 and 18:3ω3 as major unsaturated fatty acids. Total lipid extracts from the roots of both varieties showed that the lipid saturation level increased under salt stress, notwithstanding the increased proportion of polyunsaturated fatty acids. The changes in lipid saturation being predominantly due to decreases in oleic acid (18:1ω9) and increases in palmitic acid (16:0). However, Arper root extracts contained a lower proportion of saturated lipids than Aristo. The enhanced proportion of highly polyunsaturated fatty acids especially linolenic and eicosapentaenoic acids was considered to be the characteristic of the relatively salt tolerance in Arper roots.  相似文献   

14.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

15.
Aifu Yang  Qiao Su  Lijia An 《Planta》2009,229(4):793-801
The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T1 generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.  相似文献   

16.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

17.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

18.
Zhai S  Sui Z  Yang A  Zhang J 《Biotechnology letters》2005,27(11):799-804
A cDNA encoding a phosphoinositide-specific phospholipase C (PI-PLC) has been isolated from Zea mays by screening a cDNA library. The cDNA, designated ZmPLC, encodes a polypeptide of 586 amino acids, containing the catalytic X, Y and C2 domains found in all PI-PLCs from plants. Northern blot analysis showed that the expression of the ZmPLC gene in roots is up-regulated under conditions of high salt, dehydration, cold or low osmotic stress conditions. Recombinant ZmPLC protein was expressed in Esch- erichia coli, purified and used to produce polyclonal antibody, this polyclonal antibody is important for further studies to assess the ultimate function of the ZmPLC gene in plants.  相似文献   

19.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

20.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号