首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptidase activity of leukotriene A4 hydrolase purified from human leukocytes has been characterized, utilizing synthetic amides as substrates. The enzyme was stimulated by several monovalent anions. Thiocyanate ions were most effective followed by chloride and bromide ions. In phosphate buffer alone the peptidase activity towards alanine-4-nitroanilide was barely detectable and addition of 100 mM NaCl increased the specific activity more than 20-fold. Increasing the concentration of NaCl (or NaSCN) did not significantly affect the apparent Km for the substrate alanine-4-nitroanilide, but resulted in a dose dependent increase of Vmax. The stimulatory effect of these anions on the reaction velocities appeared to obey saturation kinetics and thus indicated the presence of an anion binding site. Apparent affinity constants for chloride and thiocyanate ions were calculated to 100 and 50 mM, respectively. In contrast to the effect on the peptidase activity, no chloride-stimulation could be detected of the epoxide hydrolase activity of this enzyme, i.e., the conversion of leukotriene A4 into leukotriene B4. In conclusion, the results indicate that under physiological conditions, chloride ions may selectively stimulate the peptidase activity of LTA4 hydrolase. Also, the differences in chloride concentrations between cellular compartments suggest that a possible proteolytic function of the enzyme may be limited to the extracellular space.  相似文献   

2.
Leukotriene (LT) A(4) hydrolase is a bifunctional zinc metalloenzyme, which converts LTA(4) into the neutrophil chemoattractant LTB(4) and also exhibits an anion-dependent aminopeptidase activity. In the x-ray crystal structure of LTA(4) hydrolase, Arg(563) and Lys(565) are found at the entrance of the active center. Here we report that replacement of Arg(563), but not Lys(565), leads to complete abrogation of the epoxide hydrolase activity. However, mutations of Arg(563) do not seem to affect substrate binding strength, because values of K(i) for LTA(4) are almost identical for wild type and (R563K)LTA(4) hydrolase. These results are supported by the 2.3-A crystal structure of (R563A)LTA(4) hydrolase, which does not reveal structural changes that can explain the complete loss of enzyme function. For the aminopeptidase reaction, mutations of Arg(563) reduce the catalytic activity (V(max) = 0.3-20%), whereas mutations of Lys(565) have limited effect on catalysis (V(max) = 58-108%). However, in (K565A)- and (K565M)LTA(4) hydrolase, i.e. mutants lacking a positive charge, values of the Michaelis constant for alanine-p-nitroanilide increase significantly (K(m) = 480-640%). Together, our data indicate that Arg(563) plays an unexpected, critical role in the epoxide hydrolase reaction, presumably in the positioning of the carboxylate tail to ensure perfect substrate alignment along the catalytic elements of the active site. In the aminopeptidase reaction, Arg(563) and Lys(565) seem to cooperate to provide sufficient binding strength and productive alignment of the substrate. In conclusion, Arg(563) and Lys(565) possess distinct roles as carboxylate recognition sites for two chemically different substrates, each of which is turned over in separate enzymatic reactions catalyzed by LTA(4) hydrolase.  相似文献   

3.
Leukotriene A4 hydrolase activity of human airway epithelial cells   总被引:2,自引:0,他引:2  
Human tracheal epithelial cells were incubated with LTA4 and metabolic products were identified in extracted supernatants by high pressure liquid chromatography, ultraviolet spectroscopy, and gas chromatography-mass spectrometry. In the presence of epithelial cells, LTA4 was converted to LTB4, but not to LTC4 or LTD4. Maximum LTB4 was released at an LTA4 concentration of 3 microM and had occurred by 30 min. LTB4 release was increased in the presence of albumin, but was not affected by extracellular calcium or A23187. This LTA4 hydrolase activity had a slower time course and could not be clearly inactivated by repeated exposure to substrate as is the case for previously described LTA4 hydrolase enzymes. This hydrolase appears to have novel biochemical characteristics.  相似文献   

4.
Leukotriene A4 hydrolase: a zinc metalloenzyme   总被引:5,自引:0,他引:5  
Purified human leukotriene A4 hydrolase is shown to contain 1 mol of zinc per mol of enzyme, as determined by atomic absorption spectrometry. The enzyme is inhibited dose-dependently by the chelating agents 8-hydroxy-quinoline-5-sulfonic acid, and 1,10-phenanthroline with KI values of about 2 and 8 x 10(-4) M, respectively, whereas dipicolinic acid and EDTA are ineffective in this respect. The inhibition by 1,10-phenanthroline is time-dependent, and at a concentration of 5 mM, 50% inhibition of enzyme (3 x 10(-7) M) occurs after about 15 min. The zinc atom of leukotriene A4 hydrolase can be removed by dialysis against 1,10-phenanthroline which results in loss of enzyme activity. The catalytic activity is almost completely restored by the addition of stoichiometric amounts of Zn2+ or Co2+.  相似文献   

5.
In this paper we report the development of a novel and simple spectrophotometric assay which allows one to achieve the continuous, rapid, sensitive, and accurate determination of an epoxide hydrolase activity. This assay is based on the elaboration of a coupled enzymatic/chemical methodology which allows quantification of the enzymatic activity within 3min, and offers good sensitivity of about 10 micro Mmin(-1). Applicability of this test to some other aromatic epoxides has been shown and some limitations have also been explored. This assay should be particularly useful for different applications, for example (a) activity localization during purification of such enzymes, (b) very rapid determination of kinetic constants, and (c) high-throughput screening experiments.  相似文献   

6.
Leukotriene A4 hydrolase is a zinc-containing aminopeptidase   总被引:5,自引:0,他引:5  
A comparison of amino acid sequences revealed that leukotriene A4 (LTA4) hydrolase is homologous to various types of aminopeptidases. Consistently with the finding, the purified LTA4 hydrolases from both human and guinea pig sources contained equimolar zinc ion, as determined by atomic absorption spectrometry. The enzyme had a significant amount of aminopeptidase activity toward synthetic peptide substrates. Both LTA4 hydrolase and aminopeptidase activities were inhibited by o-phenanthroline, p-chloromercuribenzoic acid, and Leu-thiol with similar IC50 values. Co-purification as well as co-immunoprecipitation of both enzyme activities with an affinity-purified antibody against LTA4 hydrolase strongly suggest that the two enzyme activities reside in a single protein.  相似文献   

7.
Mouse liver homogenates transformed leukotriene A4 into a 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid. This novel enzymatic metabolite of leukotriene A4 was characterized by physical means including ultraviolet spectroscopy, high performance liquid chromatography, and gas chromatography-mass spectrometry. After subcellular fractionation, the enzymatic activity was mostly recovered in the 105,000 X g supernatant and 20,000 X g pellet. Heat treatment (80 degrees C, 10 min) or digestion with a proteolytic enzyme abolished the enzymatic activity in the high speed supernatant. A purified cytosolic epoxide hydrolase from mouse liver also transformed leukotriene A4 into a 5,6-dihydroxyeicosatetraenoic acid with the same physico-chemical characteristics as the compound formed in crude cytosol, but not into leukotriene B4, a compound previously reported to be formed in liver cytosol (Haeggstr?m, J., R?dmark, O., and Fitzpatrick, F.A. (1985) Biochim. Biophys. Acta 835, 378-384). These findings suggest a role for leukotriene A4 as an endogenous substrate for cytosolic epoxide hydrolase, an enzyme earlier characterized by xenobiotic substrates. Furthermore, they indicate that leukotriene A4 hydrolase in liver cytosol is a distinct enzyme, separate from previously described forms of epoxide hydrolases in liver.  相似文献   

8.
A spectrophotometric method to assay epoxide hydrolase activity.   总被引:2,自引:0,他引:2  
The Aspergillus niger epoxide hydrolase activity was assayed by spectrophotometric using (rac) p-nitrostryrene oxide (pNSO) as substrate. Both the substrate (pNSO) and the reaction product, p-nitrostryrene diol (pNSD), had a strong absorbance in UV at 280 nm. The assay was based on the measure of the pNSD absorbance of the water phase after extraction of the non-reacted pNSO with a solvent. Among the five solvents tested, chloroform was selected since it extracted more than 99% of the epoxide and only 32% of the produced diol. This extraction yield was independent of the diol and epoxide concentrations and it was fairly reproducible. Using different enzyme amounts, the reaction kinetics were linear for the first 10 min corresponding to degrees of conversion less than 5% for the epoxide. Two controls were run simultaneously, one with the substrate alone (epoxide hydrolysis and non-complete extraction) and one with the enzyme alone (enzyme absorbance at 280 nm). The resulting DeltaOD/min was linear with the amount of enzyme added within a large range from 2 to 80 microg of the EH preparation. The new spectrophotometric assay correlates well with the previous HPLC assay and could be used routinely for an easy and fast evaluation of EH activity. The kinetic parameters of (rac) pNSO hydrolysis by A. niger epoxide hydrolase could be easily determined and K(M) (1.1 mM) compared well with that previously reported (1.0 mM).  相似文献   

9.
Leukotriene A4 hydrolase was quantitated by radioimmunoassay, in extracts from eight human tissues. The enzyme was detectable in all tissues, with the highest level (2.6 mg per g soluble protein) in leukocytes, followed by lung and liver. The polyclonal antiserum did not cross-react with cytosolic epoxide hydrolase purified from mouse or human liver. When incubated with leukotriene A4, formation of leukotriene B4 was evident in all tissues. Furthermore, enzymatic formation of (5S,6R)-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid from leukotriene A4, was found in extracts from liver, kidney and intestines.  相似文献   

10.
We have developed a rapid screening procedure that enables the screening of hundreds of enzyme samples or variants for epoxide hydrolase activity towards any substrate. The procedure detects the products of the enzymatic reaction via periodate cleavage and remaining fluorescence of carboxyfluorescein.  相似文献   

11.
Leukotriene A4 hydrolase in human leukocytes. Purification and properties   总被引:17,自引:0,他引:17  
Leukotriene A4 hydrolase, a soluble enzyme catalyzing hydrolysis of the allylic epoxide leukotriene A4 to the dihydroxy acid leukotriene B4, was purified to apparent homogeneity from human leukocytes. The enzymatic reaction obeyed Michaelis-Menten saturation kinetics with respect to varying concentrations of leukotriene A4. An apparent KM value ranging between 20 and 30 microM was deduced from Eadie-Hofstee plots. Physical properties including molecular weight (68,000-70,000), amino acid composition, and aminoterminal sequence were determined. It was indicated that leukotriene A4 hydrolase is a monomeric protein, distinct from previously described epoxide hydrolases in liver.  相似文献   

12.
Leukotriene A4 hydrolase from the human lung was purified to apparent homogeneity. The molecular weight (68,000-71,000), the amino acid composition, and the N-terminal amino acid sequence were similar to those of the human neutrophil enzyme but different from those of human erythrocyte enzyme. The lung enzyme was inactivated by its substrate, leukotriene A4. To elucidate the substrate and the inactivator specificity of this enzyme, we synthesized various geometric and positional isomers of leukotriene A4. 14,15-Leukotriene A4, leukotriene A4 methyl ester, and geometric isomers of leukotriene A4 could not serve as substrates, but they inactivated the enzyme. On the other hand, styrene oxide and (5S)-trans-5,6-oxide-8,10,14-cis-12-trans-eicosatetraenoic acid neither served as substrates nor inactivated the enzyme. These results indicate that whereas allylic epoxide structures of arachidonic acids are responsible for inactivation of the enzyme, the free carboxylic acid, 5,6-oxide, and the tetraene structure with the 7,9-trans-11,14-cis configuration are required as a substrate for leukotriene A4 hydrolase.  相似文献   

13.
Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.  相似文献   

14.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

15.
The epoxide hydrolase from Rhodotorula glutinis was isolated and initially characterized. The enzyme was membrane associated and could be solubilized by Triton X-100. Purification yielded an enzyme with sp. act. of 66 mol 1,2-epoxyhexane hydrolyzed min–1 mg–1 protein. The enzyme was not completely purified to homogeneity but, nevertheless, a major protein was isolated by SDS-PAGE for subsequential amino acid determination of peptide fragments. From sequence alignments to related enzymes, a high homology towards the active site sequences of other microsomal epoxide hydrolases was found. Molecular mass determinations indicated that the native enzyme exists as a homodimer, with a subunit molecular mass of about 45 kDa. Based upon these, this epoxide hydrolase is structurally related to other microsomal epoxide hydrolases.  相似文献   

16.
17.
Thompson MW  Archer ED  Romer CE  Seipelt RL 《Peptides》2006,27(7):1701-1709
Saccharomyces cerevisiae leukotriene A4 hydrolase (LTA4H) is a bifunctional aminopeptidase/epoxide hydrolase and a member of the M1 family of metallopeptidases. In order to obtain a more thorough understanding of the aminopeptidase activity of the enzyme, two conserved tyrosine residues, Tyr244 and Tyr456, were altered to phenylalanine and the mutant proteins characterized by determining KM and kcat for various amino acid beta-naphthylamide substrates. While mutation of Tyr456 exhibited minimal effect on catalysis, mutation of Tyr244 caused an overall 25-100-fold reduction in catalytic activity for all substrates tested. Furthermore, LTA4H Y244F exhibited a 40-fold decrease in affinity for RB-3014, a transition state analog inhibitor, implicating Tyr244 in transition state stabilization.  相似文献   

18.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 microM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca+2, Mn+2, Fe+2, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 microM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 microM. From these inhibition studies, it can be theorized that the epoxide hydrolase has at least one hydrophobic and one hydrophilic binding site.  相似文献   

19.
In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35 kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects.  相似文献   

20.
Leukotriene A4 hydrolase was purified to apparent homogeneity from the guinea pig lung. The molecular weight was determined to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited two active forms with different pI values (5.7 and 5.4) depending on the presence or absence of SH-reducing reagents during purification procedures. No significant differences were observed between both forms of the enzyme as regards the catalytic properties. The N-terminal 20 amino acid sequence (PEVVDTXSLASPATVXRTKH) showed a 90% identity to the human enzyme with a constitutive substitution of Ile-3 and Ser-14 (human) by Val-3 and Thr-14 (guinea pig), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号