首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Katoh  H. Ishikawa 《Protoplasma》1989,150(2-3):83-95
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos.  相似文献   

2.
Drosophila melanogaster embryogenesis begins with 13 nuclear division cycles within a syncytium. This produces >6,000 nuclei that, during the next division cycle, become encased in plasma membrane in the process known as cellularization. In this study, we investigate how the secretory membrane system becomes equally apportioned among the thousands of syncytial nuclei in preparation for cellularization. Upon nuclear arrival at the cortex, the endoplasmic reticulum (ER) and Golgi were found to segregate among nuclei, with each nucleus becoming surrounded by a single ER/Golgi membrane system separate from adjacent ones. The nuclear-associated units of ER and Golgi across the syncytial blastoderm produced secretory products that were delivered to the plasma membrane in a spatially restricted fashion across the embryo. This occurred in the absence of plasma membrane boundaries between nuclei and was dependent on centrosome-derived microtubules. The emergence of secretory membranes that compartmentalized around individual nuclei in the syncytial blastoderm is likely to ensure that secretory organelles are equivalently partitioned among nuclei at cellularization and could play an important role in the establishment of localized gene and protein expression patterns within the early embryo.  相似文献   

3.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

4.
We describe a recessive, maternal-effect lethal mutation of Drosophila, gnu. gnu uncouples nuclear division from many cytoplasmic events of mitosis in the Drosophila embryo. Embryos from homozygous females are defective in nuclear division, but not in DNA replication, and therefore develop a small number of giant nuclei. Centrosomes divide independently of nuclear division and migrate to the surface of the syncytial blastoderm. There they nucleate microtubules into asters, which appear normal at first but become very large. Only later, when the giant nuclei begin to break down, are spindles sometimes formed. The cortical actin of these embryos develops into a characteristic network.  相似文献   

5.
《The Journal of cell biology》1995,129(6):1575-1588
The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three- dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.  相似文献   

6.
Microtubules in the silkworm egg, Bombyx mori , were observed by electron microscopy, in order to investigate the relationship between cytoskeletal organelles and the migration of energids, the cleavage nuclei accompanied by the associated cytoplasm, near the egg surface or during blastoderm formation. Numerous microtubules were observed in the associated cytoplasm of an energid even in the interphase of mitosis.
At about 8.5 hr after oviposition, when many energids had already cleft and distributed near the peripheral yolk granule region, long microtubules distributed radially from the perinuclear region to the periphery in the associated cytoplasm. When an energid was protruding, the microtubules above the nucleus distributed at a more acute angle than those under the nucleus. When a blastoderm cell had just been formed, the microtubules were observed only under the nucleus.
Colchicine, an inhibitor of microtubules, stopped the migration of energids and inhibited the formation of blastoderm cells even after many energids had already distributed at the peripheral yolk granule region. The relationship between the microtubules and the migration of energids near the egg surface or during blastoderm formation was discussed.  相似文献   

7.
The maternal effect gene swallow ( swa) of Drosophila is required for bicoid and htsN4 mRNA localization during oogenesis. Swallow is also required for additional, poorly understood, functions in early embryogenesis. We have examined the cytoskeleton in swa mutant oocytes and embryos by immunocytochemistry and confocal microscopy. Mid- and late-stage swaoocytes have defective cytoplasmic actin networks. Stage-10 oocytes have solid actin clumps and hollow actin spheres in the subcortical layer, and late-stage oocytes have uniformly distributed hollow actin spheres in the subcortical layer and in deeper cytoplasm. Swa preblastoderm embryos have uneven and irregularly distributed actin at the cortex, and defective subcortical actin networks that contain hollow and solid spheres. In swa syncytial blastoderm embryos, the abnormal actin cytoskeleton is associated with defects in nuclear distribution, migration and cleavage. Actin cytoskeletal defects correlate with spindle defects, suggesting that the abnormal organization of the actin cytoskeleton allows interaction of mitotic spindles, which induces defective nuclear divisions and loss of nuclei from the surface of the embryo.  相似文献   

8.
Early embryonic development, from the first cleavage to the germ-disk stage, in the theridiid spider Achaearanea japonica was examined by light and electron microscopy. The eggs are syncytial during the first four cleavages, and then invaginations of cell membranes fuse to generate the blastomeres at the sixteen-nucleus stage. The cleavage pattern is a modified type of total cleavage. It appears that radial bundles of microtubules that radiate from the perinuclear cytoplasm may participate in the migration of cleavage nuclei for the formation of the blastoderm. The large yolk granules are sequestered by cell membranes from the blastomeres or blastoderm cells into the interior of the embryo together with various organelles and glycogen granules. Most of the blastoderm cells converge in the upper hemisphere to form the germ disk, whereas a few cells remain in the lower hemisphere. The embryo at the germ-disk stage contains many spherical germ-disk cells. Almost no large yolk granules are found in these cells, but the flat remaining cells each contain several large yolk granules. These remaining cells may preserve a flat shape to cover the surface of the embryo that does not include the germ disk. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Cytoskeletal proteins tagged with green fluorescent protein were used to directly visualize the mechanical role of the cytoskeleton in determining cell shape. Rat embryo (REF 52) fibroblasts were deformed using glass needles either uncoated for purely physical manipulations, or coated with laminin to induce attachment to the cell surface. Cells responded to uncoated probes in accordance with a three-layer model in which a highly elastic nucleus is surrounded by cytoplasmic microtubules that behave as a jelly-like viscoelastic fluid. The third, outermost cortical layer is an elastic shell under sustained tension. Adhesive, laminin-coated needles caused focal recruitment of actin filaments to the contacted surface region and increased the cortical layer stiffness. This direct visualization of actin recruitment confirms a widely postulated model for mechanical connections between extracellular matrix proteins and the actin cytoskeleton. Cells tethered to laminin-treated needles strongly resisted elongation by actively contracting. Whether using uncoated probes to apply simple deformations or laminin-coated probes to induce surface-to-cytoskeleton interaction we observed that experimentally applied forces produced exclusively local responses by both the actin and microtubule cytoskeleton. This local accomodation and dissipation of force is inconsistent with the proposal that cellular tensegrity determines cell shape.  相似文献   

10.
drop out (dop) is a recessive maternal-effect locus identified in a screen for female-sterile mutations in Drosophila polytene region 71C-F. Phenotypic analyses of the dop mutation indicate that the gene is required for proper formation of the cellular blastoderm. In embryos derived from either homozygous or hemizygous dop mothers, cytoplasmic clearing, nuclear migration and division, and pole cell formation appear normal. However, developmental defects are observed prior to and during cellularization of the blastoderm. At the beginning of nuclear cycle 14, the distinct separation of the internal yolk mass and the cortical cytoplasm breaks down. Subsequently, a population of somatic nuclei located at the periphery of the syncytial blastoderm becomes irregularly spaced and nonuniform in their distribution. Despite a somewhat regular formation of the cortical actin network, cellularization in mutant embryos is extremely variable. Such embryos fail to gastrulate normally and produce variable amounts of defective cuticle. Overall, our analyses suggest that the dop gene functions in maintaining the separation of yolk and cortical cytoplasm and in stabilizing the distribution of somatic nuclei in the Drosophila syncytial blastoderm.  相似文献   

11.
Centrosome splitting during nuclear elongation in the Drosophila embryo   总被引:1,自引:0,他引:1  
In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.  相似文献   

12.
Cultured human polymorphonuclear leukocytes exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) spread on the substratum and undergo centrosome splitting. The two centrioles may separate by a distance of several micrometers, each being surrounded by an aster of microtubules. Here we show that the centriole/aster complexes are in constant, rapid motion through the cytoplasm, carrying with them some of the cytoplasmic granules while pushing aside others, or deforming and displacing the nucleus. An analysis of this unique motility phenomenon was undertaken. We show that intact microtubules are required for TPA-induced centrosome splitting and aster motility, but not for cell spreading. More importantly, disruption of the actin network inhibits both centrosome splitting and cell spreading, and even reverses splitting (induces convergence and fusion of asters) in polymorphonuclear leukocytes pretreated with TPA alone. These observations indicate the existence of a dynamic relationship between microtubules and actin networks and provide evidence for a role of actin in determining the position of the centrosome by way of interaction with the microtubules radiating from it.  相似文献   

13.
The band-legged ground cricket Dianemobius nigrofasciatus enters diapause at an early embryonic stage when adults are reared under short-day conditions or the eggs are exposed to a low temperature. We examined the morphological features of the embryo during early development and determined the exact stage of entry into diapause. In non-diapause eggs, no periplasmic space was observed in the surface region and a small number of nuclei surrounded by cytoplasm (energids) were found among the yolk granules and lipid droplets 12 h after egg laying (AEL) at 25°C. The energids sparsely but evenly populated the surface region at 40 h AEL, but there were some gaps between these energids. A continuous thin layer of nuclei with cytoplasm had completely covered the egg surface at 56 h AEL, suggesting that the blastoderm is formed between 40 and 56 h AEL. At 72 h AEL, we found a germ band at the posterior pole. Electron microscopy revealed clear cell membranes at 40 h AEL. Staining with rhodamine-dextran dye demonstrated that the cell membrane is formed when the nuclei appear on the egg surface at 12–24 h AEL. These results indicate that cellularization occurs before blastoderm formation. In diapause eggs, neither the embryonic rudiment nor germ band was formed, but a continuous layer of cells covered the egg surface. It is concluded that D. nigrofasciatus enters diapause at the cellular blastoderm.  相似文献   

14.
The organization of microtubules within the surface caps of Drosophila embryos is described for the mitotic cycles of the syncytial blastoderm stage (particularly cycle 10), and for the subsequent cellularization process. Tubulin was labelled with the well characterized monoclonal antibody YL 1/2 (Kilmartin et al., J cell biol 93 (1982) 576). Each surface cap was found to contain an array of microtubules running around the nucleus. The microtubules originated at prominent centrosomes located close to the apical surface of each cap nucleus. During mitosis the spindle microtubules stained strongly for tubulin. A novel finding was that the spindle microtubules of the interzone region appeared to reduce their connections with the centrosomes at the end of anaphase. The spindle remnant remained in position during telophase but then became smaller in size, disappearing by interphase. At this phase of the cell cycle duplication of the aster centrosomes occurred. The cellular blastoderm stage was marked by a change in the main axis of microtubule orientation. The centrosomes of each cap separated somewhat and formed initiation centres for the development of a well developed basket of microtubules around each nucleus, but now perpendicular to the surface. The microtubule baskets were seen to extend in parallel with nuclear elongation, but not in concert with growth of the cell membranes, which extended some way beneath the bases of the nuclei.  相似文献   

15.
Changes in cellular microtubule organization often accompany developmental progression. In the Caenorhabditis elegans embryo, the centrosome, which is attached to the nucleus via ZYG-12, organizes the microtubule network. In this study, we investigate ZYG-12 function and microtubule organization before embryo formation in the gonad. Surprisingly, ZYG-12 is dispensable for centrosome attachment in the germline. However, ZYG-12–mediated recruitment of dynein to the nuclear envelope is required to maintain microtubule organization, membrane architecture, and nuclear positioning within the syncytial gonad. We examined γ-tubulin localization and microtubule regrowth after depolymerization to identify sites of nucleation in germ cells. γ-Tubulin localizes to the plasma membrane in addition to the centrosome, and regrowth initiates at both sites. Because we do not observe organized microtubules around zyg-12(ct350) mutant nuclei with attached centrosomes, we propose that gonad architecture, including membrane and nuclear positioning, is determined by microtubule nucleation at the plasma membrane combined with tension on the microtubules by dynein anchored at the nucleus by ZYG-12.  相似文献   

16.
《The Journal of cell biology》1994,127(6):1637-1653
We show here using time-lapse video tapes that cytoplasmic streaming causes nuclear migration along the anterior-posterior axis (axial expansion) in the early syncytial embryo of Drosophila melanogaster. Using confocal microscopy and labeled phalloidin we explore the distribution of F-actin during axial expansion. We find that a network of F-actin fibers fills the cytoplasm in the embryo. This actin network partially disassembles around the nuclei during axial expansion. Our observations of normal development, fixed embryos, and drug injection experiments indicate that disassembly of the actin network generates cytoplasmic movements. We suggest that the cell cycle regulates disassembly of the actin network, and that this process may be mediated directly or indirectly by the microtubules. The cytoplasmic movements we observe during axial expansion are very similar to fountain streaming in the pseudopod of amoebae, and by analogy with the pseudopod we propose a working hypothesis for axial expansion based on solation-contraction coupling within the actin network.  相似文献   

17.
Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.  相似文献   

18.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed.  相似文献   

20.
Rhodamine phalloidin-staining was used to study the organization of the cortical actin cytoskeleton of the early Ceratitis capitata embryo. The dynamics of the actin aggregates and their changes in distribution during the formation of the syncytial blastoderm, were followed in detail. It was found that these aggregates formed a shell-like cluster around the interphase nuclei, and concentrated toward the poles of the mitotic apparatus when the nuclei divided. Laser scanning confocal microscopy revealed that aggregates not clustered at the poles of the mitotic apparatus were closely associated with fine fibers of a dense cytoplasmic network of actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号