首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We cloned a DNA fragment responsible for drug resistance from chromosome of Vibrio cholerae non-O1. Nucleotide sequence analysis of this fragment revealed the presence of a single open reading frame encoding a protein consisting of 445 amino acid residues. We designated the gene as vcrM. Hydropathy analysis of the deduced amino acid sequence of VcrM suggests the presence of 12 trans-membrane segments. A dendrogram showed that VcrM is a member of the DinF-subfamily within the MATE family of multidrug efflux pumps. Expression of the cloned vcrM gene in drug-hypersensitive Escherichia coli KAM32 cells made them resistant to acriflavine, 4', 6-diamidino-2-phenylindole, Hoechst 33342, rhodamine 6G, tetraphenylphosphonium chloride (TPPCl) and ethidium bromide. Efflux of acriflavine due to VcrM was dependent on Na+ or Li+. Moreover, Na+ efflux was observed with VcrM when TPPCl was added to Na+-loaded cells. Therefore, we conclude that VcrM is a Na+/drug antiporter-type multidrug efflux pump.  相似文献   

2.
We cloned a gene, ECL_03329, from the chromosome of Enterobacter cloacae ATCC13047, using a drug-hypersensitive Escherichia coli KAM32 cell as the host. We show here that this gene, designated as emmdR, is responsible for multidrug resistance in E. cloacae. E. coli KAM32 host cells containing the cloned emmdR gene (KAM32/pEMMDR28) showed decreased susceptibilities to benzalkonium chloride, norfloxacin, ciprofloxacin, levofloxacin, ethidium bromide, acriflavine, rhodamine6G, and trimethoprim. emmdR-deficient E. cloacae cells (EcΔemmdR) showed increased susceptibilities to several of the antimicrobial agents tested. EmmdR has twelve predicted transmembrane segments and some shared identity with members of the multidrug and toxic compound extrusion (MATE) family of transporters. Study of the antimicrobial agent efflux activities revealed that EmmdR is an H+-drug antiporter but not a Na+ driven efflux pump. These results indicate that EmmdR is responsible for multidrug resistance and pumps out quinolones from E. cloacae.  相似文献   

3.
Deletion and insertion mutants of the multidrug transporter   总被引:5,自引:0,他引:5  
The multidrug transporter is a 170,000-dalton membrane glycoprotein which confers multidrug resistance through its activity as an ATP-dependent efflux pump for hydrophobic, cytotoxic drugs. To determine the essential structural components of this complex membrane transporter we have altered an MDR1 cDNA in an expression vector by deletion and insertion mutations. The structure of the transporter deduced from its amino acid sequence suggests that it consists of two homologous, perhaps functionally autonomous, halves each with six transmembrane segments and a cytoplasmic ATP-binding domain. However, several carboxyl-terminal deletions, one involving 53 amino acids, the second removing 253 amino acids, and an internal deletion within the carboxyl-terminal half of the molecule, totally eliminate the ability of the mutant transporter to confer drug resistance. An internal deletion of the amino-terminal half, which removed residues 140-229, is also nonfunctional. Small carboxylterminal deletions of up to 23 amino acids leave a functional transporter, although the removal of 23 COOH-terminal amino acids reduces its ability to confer colchicine resistance. Insertions of 4 amino acids in a transmembrane domain, and in one of the two ATP-binding regions, have no effect on activity. These studies define some of the limits of allowable deletions and insertions in the MDR1 gene, and demonstrate the requirement for two intact halves of the molecule for a functional multidrug transporter.  相似文献   

4.
KEA genes encode putative K(+) efflux antiporters that are predominantly found in algae and plants but are rare in metazoa; however, nothing is known about their functions in eukaryotic cells. Plant KEA proteins show homology to bacterial K(+) efflux (Kef) transporters, though two members in the Arabidopsis thaliana family, AtKEA1 and AtKEA2, have acquired an extra hydrophilic domain of over 500 residues at the amino terminus. We show that AtKEA2 is highly expressed in leaves, stems and flowers, but not in roots, and that an N-terminal peptide of the protein is targeted to chloroplasts in Arabidopsis cotyledons. The full-length AtKEA2 protein was inactive when expressed in yeast; however, a truncated AtKEA2 protein (AtsKEA2) lacking the N-terminal domain complemented disruption of the Na(+)(K(+))/H(+) antiporter Nhx1p to confer hygromycin resistance and tolerance to Na(+) or K(+) stress. To test transport activity, purified truncated AtKEA2 was reconstituted in proteoliposomes containing the fluorescent probe pyranine. Monovalent cations reduced an imposed pH gradient (acid inside) indicating AtsKEA2 mediated cation/H(+) exchange with preference for K(+)=Cs(+)>Li(+)>Na(+). When a conserved Asp(721) in transmembrane helix 6 that aligns to the cation binding Asp(164) of Escherichia coli NhaA was replaced with Ala, AtsKEA2 was completely inactivated. Mutation of a Glu(835) between transmembrane helix 8 and 9 in AtsKEA2 also resulted in loss of activity suggesting this region has a regulatory role. Thus, AtKEA2 represents the founding member of a novel group of eukaryote K(+)/H(+) antiporters that modulate monovalent cation and pH homeostasis in plant chloroplasts or plastids.  相似文献   

5.
Integral membrane proteins from a wide variety of sources conform to a "positive-inside rule," with many more positively charged amino acids in their cytoplasmic as compared to extracytoplasmic domains. A growing body of experimental work also points to positively charged residues in regions flanking the apolar transmembrane segments as being the main topological determinants. In this paper, we report a systematic comparison of the effects of positively (Arg, Lys, His) as well as negatively (Asp, Glu) charged residues on the membrane topology of a model Escherichia coli inner membrane protein. Our results show that positive charge is indeed the major factor determining the transmembrane topology, with Arg and Lys being of nearly equal efficiency. His, although normally a very weak topological determinant, can be potentiated by a lowering of the cytoplasmic pH. Asp and Glu affect the topology to similar extents and only when present in very high numbers.  相似文献   

6.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.  相似文献   

7.
8.
The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by removing one intracellular H(+) in exchange for one extracellular Na(+). It has a large N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the putative transmembrane segment IX (residues 339-363). Each residue was mutated to cysteine in a functional cysteineless NHE1 protein. Of 25 amino acids mutated, 5 were inactive or nearly so after mutation to cysteine. Several of these showed aberrant targeting to the plasma membrane and reduced expression of the intact protein, whereas others were expressed and targeted correctly but had defective NHE1 function. Of the active mutants, Glu(346) and Ser(351) were inhibited >70% by positively charged [2-(trimethylammonium)-ethyl]methanethiosulfonate but not by anionic [2-sulfonatoethyl]methanethiosulfonate, suggesting that they are pore lining and make up part of the cation conduction pathway. Both mutants also had decreased affinity for Na(+) and decreased activation by intracellular protons. The structure of a peptide representing amino acids 338-365 was determined by using high resolution NMR in dodecylphosphocholine micelles. The structure contained two helical regions (amino acids Met(340)-Ser(344) and Ile(353)-Ser(359)) kinked with a large bend angle around a pivot point at amino acid Ser(351). The results suggest that transmembrane IX is critical with pore-lining residues and a kink at the functionally important residue Ser(351).  相似文献   

9.
EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu14) from both EmrE monomers. Previous studies implied that other residues in the vicinity of Glu14 are part of the binding domain. Alkylation of Cys replacements in the same transmembrane domain inhibits the activity of the protein and this inhibition is fully prevented by substrates of EmrE. To monitor directly the reaction we tested also the extent of modification using fluorescein-5-maleimide. While most residues are not accessible or only partially accessible, four, Y4C, I5C, L7C, and A10C, were modified at least 80%. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of two of these residues by up to 80%. To study other essential residues we generated functional hetero-oligomers and challenged them with various methane thiosulfonates. Taken together the findings imply the existence of a binding cavity accessible to alkylating reagents where at least three residues from TM1, Tyr40 from TM2, and Trp63 in TM3 are involved in substrate binding.  相似文献   

10.
The path of substrates in the multidrug efflux pump AcrB of Escherichia coli was examined by using labeling with a lipophilic substrate mimic, Bodipy FL maleimide. Four (out of eight) residues in the vestibule bound the dye, suggesting its role in substrate transport, whereas only one (out of nine) residue in the central cavity tested positive.  相似文献   

11.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   

12.
The TolC protein of Escherichia coli comprises an outer membrane beta-barrel channel and a contiguous alpha-helical tunnel spanning the periplasm, providing an exit duct for protein export and multidrug efflux. It forms a single transmembrane pore that is open to the outside of the cell but constricted at the peri-plasmic tunnel entrance. This sole constriction is lined by a ring of six aspartate residues, two in each of the three identical monomers. When these were replaced by alanines, the resulting TolC(DADA) protein reconstituted normally in black lipid membranes but showed altered electrophysiological characteristics. In particular, it had lost the strong pH dependence of the wild type and had switched ion selectivity from cations to anions. The function of wild-type TolC as a membrane pore was severely inhibited by divalent and trivalent cations entering the channel tunnel from the channel ("extracurricular") side. Divalent cations bound reversibly to effect complete blocking of the transmembrane ion flux. Trivalent cations were more potent. Hexamminecobalt bound at nanomolar concentrations allowed visualization of single blocking events, whereas the smaller Cr(3+) cation bound irreversibly and could also access the cation binding site via the tunnel entrance. The inhibitory cations had no effect on the mutant TolC(DADA), supporting the view that the aspartate ring is the cation binding site. The electronegative entrance is widely conserved throughout the TolC family, which is essential for efflux and export my Gram-negative bacteria, suggesting that it could present a general target for drugs.  相似文献   

13.
The Escherichia coli AcrB multidrug efflux pump is a membrane protein that recognizes many structurally dissimilar toxic compounds. We previously reported the X-ray structures of four AcrB-ligand complexes in which the ligands were bound to the wall of the extremely large central cavity in the transmembrane domain of the pump. Genetic studies, however, suggested that discrimination between the substrates occurs mainly in the periplasmic domain rather than the transmembrane domain of the pump. We here describe the crystal structures of the AcrB mutant in which Asn109 was replaced by Ala, with five structurally diverse ligands, ethidium, rhodamine 6G, ciprofloxacin, nafcillin, and Phe-Arg-beta-naphthylamide. The ligands bind not only to the wall of central cavity but also to a new periplasmic site within the deep external depression formed by the C-terminal periplasmic loop. This depression also includes residues identified earlier as being important in the specificity. We show here that conversion into alanine of the Phe664, Phe666, or Glu673 residue in the periplasmic binding site produced significant decreases in the MIC of most agents in the N109A background. Furthermore, decreased MICs were also observed when these residues were mutated in the wild-type AcrB background, although the effects were more modest. The MIC data were also confirmed by assays of ethidium influx rates in intact cells, and our results suggest that the periplasmic binding site plays a role in the physiological process of drug efflux.  相似文献   

14.
The gene coding for four subunits of cytochrome aa3-type oxidase was isolated from a genomic DNA library of the thermophilic bacterium PS3 and sequenced. The N-terminus of each subunit was also sequenced to verify the initiation site of the reading frame. The deduced amino acid sequences contained 615 amino acid residues for subunit I (CO1/caaB product), 333 residues for subunit II (CO2/caaA product), 207 residues for subunit III (CO3/caaC product), and 109 residues for subunit IV (CO4/caaD product) after processing. Re-examination of the sequencing of caa revealed a longer open reading frame for CO1, which contains 14 transmembrane segments instead of 12 [Sone et al. (1988) J. Biochem. 103, 606-610], although the main portions of the sequences constituting cytochrome a (FeA), cytochrome a3 (FeB), and CuB are correct. PS3 CO2 has an additional sequence for cytochrome c after the CuA binding protein portion with 2 transmembrane segments, which is homologous to the mitochondrial counterpart. PS3 CO3 has DCCD-binding glutamyl residues but contains only 5 transmembrane segments, unlike the mitochondrial counterpart, which has 7 segments. The subunits of PS3 cytochrome oxidase (aa3-type) show clear similarity in amino acid sequences with those of cytochrome bo-type oxidase from Escherichia coli as well, in spite of the difference of hemes. PS3 CO3 and CO4 are much more similar to E. coli CO3 and CO4 than to mitochondrial CO3 and CO4, respectively.  相似文献   

15.
EmrE is a small multidrug transporter (110 amino acids long) from Escherichia coli that extrudes various drugs in exchange with protons, thereby rendering bacteria resistant to these compounds. Glu-14 is the only charged membrane-embedded residue in EmrE and is evolutionarily highly conserved. This residue has an unusually high pK and is an essential part of the binding domain, shared by substrates and protons. The occupancy of the binding domain is mutually exclusive, and, as such, this provides the molecular basis for the coupling between substrate and proton fluxes. Systematic cysteine-scanning mutagenesis of the residues in the transmembrane segment (TM1), where Glu-14 is located, reveals an amino acid cluster on the same face of TM1 as Glu-14 that is part of the substrate- and proton-binding domain. Substitutions at most of these positions yielded either inactive mutants or mutants with modified affinity to substrates. Substitutions at the Ala-10 position, one helix turn away from Glu-14, yielded mutants with modified affinity to protons and thereby impaired in the coupling of substrate and proton fluxes. Taken as a whole, the results strongly support the concept of a common binding site for substrate and protons and stress the importance of one face of TM1 in substrate recognition, binding, and H(+)-coupled transport.  相似文献   

16.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   

17.
A Staphylococcus epidermidis plasmid conferring inducible resistance to 14-membered ring macrolides and type B streptogramins has been analysed and the DNA sequence of the gene responsible for resistance determined. A single open reading frame of 1.464 kbp, preceded by a complex control region containing a promoter and two ribosomal binding sites, was identified. The deduced sequence of the 488-amino-acid protein (MsrA) revealed the presence of two ATP-binding motifs homologous to those of a family of transport-related proteins from Gram-negative bacteria and eukaryotic cells, including the P-glycoprotein responsible for multidrug resistance. In MsrA, but not these other proteins, the two potential ATP-binding domains are separated by a Q-linker of exceptional length. Q-linkers comprise a class of flexible interdomain fusion junctions that are typically rich in glutamine and other hydrophilic amino acids and have a characteristic spacing of hydrophobic amino acids, as found in the MsrA sequence. Unlike the other transport-related proteins, which act in concert with one or more hydrophobic membrane proteins, MsrA appears to function independently when cloned in a heterologous host (Staphylococcus aureus RN4220). MsrA might, therefore, interact with and confer antibiotic specificity upon other transmembrane efflux complexes of staphylococcal cells. The active efflux of [14C]-erythromycin from cells of S. aureus RN4220 containing msrA has been demonstrated.  相似文献   

18.
Adler J  Bibi E 《Journal of bacteriology》2002,184(12):3313-3320
The hydrophobicity profile and sequence alignment of the Escherichia coli multidrug transporter MdfA indicate that it belongs to the 12-transmembrane-domain family of transporters. According to this prediction, MdfA contains a single membrane-embedded charged residue (Glu26), which was shown to play an important role in substrate recognition. To test the predicted secondary structure of MdfA, we analyzed complementary pairs of hybrids of MdfA-PhoA (alkaline phosphatase, functional in the periplasm) and MdfA-Cat (chloramphenicol acetyltransferase, functional in the cytoplasm), generated in all the putative cytoplasmic and periplasmic loops of MdfA. Our results support the 12-transmembrane topology model and the suggestion that except for Glu26, no other charged residues are present in the membrane domain of MdfA. Surprisingly, by testing the ability of the truncated MdfA-Cat and MdfA-PhoA hybrids to confer multidrug resistance, we demonstrate that the entire C-terminal transmembrane domain and the cytoplasmic C terminus are not essential for MdfA-mediated drug resistance and transport.  相似文献   

19.
20.
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号