首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shaul O  Galili G 《Plant physiology》1992,100(3):1157-1163
In higher plants, the synthesis of the essential amino acid threonine is regulated primarily by the sensitivity of the first enzyme in its biosynthetic pathway, aspartate kinase, to feedback inhibition by threonine and lysine. We aimed to study the potential of increasing threonine accumulation in plants by means of genetic engineering. This was addressed by the expression of a mutant, desensitized aspartate kinase derived from Escherichia coli either in the cytoplasm or in the chloroplasts of transgenic tobacco (Nicotiana Tabacum cv Samsun NN) plants. Both types of transgenic plants exhibited a significant overproduction of free threonine. However, threonine accumulation was higher in plants expressing the bacterial enzyme in the chloroplast, indicating that compartmentalization of aspartate kinase within this organelle was important, although not essential. Threonine overproduction in leaves was positively correlated with the level of the desensitized enzyme. Transgenic plants expressing the highest leaf aspartate kinase activity also exhibited a slight increase in the levels of free lysine and isoleucine, both of which share a common biosynthetic pathway with threonine, but showed no significant change in the level of other free amino acids. The present study proposes a new molecular biological approach to increase the limiting content of threonine in higher plants.  相似文献   

2.
Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a high capacity for mating with MATa strains. The MAT alpha/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MAT alpha homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MAT alpha/MATa):two haploid segregants. Therefore, MAT switches occur in MAT alpha/mata-2 HO/ho cells to produce MAT alpha/Mata cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MAT alpha and subsequently to a functional MATa. Among 32 MAT alpha to MATa switches tested, where the MAT alpha was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, complements the matalpha ste1-5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the Mat alpha locus. No mata-2 was recovered by HO-mediated switching of MAT alpha (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MAT alpha and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (HICKS, STRATHERN and HERSKOWITZ )977b) proposed to explain MAT interconversions.  相似文献   

3.
Yeast mutants resistant to a toxic lysine analog, thialysine were obtained by a method described in the literature [1]. A strain excreting the maximum amount of lysine (0.45 g/l) was selected from these mutants. The intracellular content of lysine was also increased by 30%. The genetic nature of lysine overproduction was studied in this strain. An increase in the amount of excreted lysine was shown to be determined by at least two genes, one of which carries a mutation of thialysine resistance manifesting the pleiotropic effect of lysine overproduction (Th1R) and the other is involved in the regulation of lysine production (PRL). Linkage groups of these genes were determined: the first gene was mapped to the IV chromosome and the second, to the XV chromosome. Both genetic characters were introduced into industrial baker's yeast strains via a series of backcrosses. The stabilization of the genome in the newly derived strains was confirmed by electrokaryotyping.  相似文献   

4.
Addition of -mercaptoethanol at a concentration of 2–3 mM to media containing methanol, glucose, or yeast extract caused a 50% inhibition of the growth of wild-type yeastPichia methanolica; mercaptoethanol at a concentration of 0.7 to 25 mM inhibited the growth of the mutant strain ecr1. The mutation mth1 of P. methanolica repressed its ability to consume methanol and was accompanied by the loss of alcohol oxidase (EC 1.1.3.13) activity. -Mercaptoethanol restored the ability of mth1 mutant cells to grow on methanol and stimulated their growth under derepression conditions. The growth effect of -mercaptoethanol during derepression was accompanied by partial restoration of alcohol oxidase activity.  相似文献   

5.
The Saccharomyces cerevisiae RAD27 gene encodes the yeast homologue of the mammalian FEN-1 nuclease, a protein that is thought to be involved in the processing of Okazaki fragments during DNA lagging-strand synthesis. One of the predicted DNA lesions occurring in rad27 strains is the presence of single-stranded DNA of the template strand for lagging-strand synthesis. We examined this prediction by analyzing the terminal DNA structures generated during telomere replication in rad27 strains. The lengths of the telomeric repeat tracts were found to be destabilized in rad27 strains, indicating that naturally occurring direct repeats are subject to tract expansions and contractions in such strains. Furthermore, abnormally high levels of single-stranded DNA of the templating strand for lagging-strand synthesis were observed in rad27 cells. Overexpression of Dna2p in wild-type cells also yielded single-stranded DNA regions on telomeric DNA and caused a cell growth arrest phenotype virtually identical to that seen for rad27 cells grown at the restrictive temperature. Furthermore, overexpression of the yeast exonuclease Exo1p alleviated the growth arrest induced by both conditions, overexpression of Dna2p and incubation of rad27 cells at 37 degrees C. However, the telomere heterogeneity and the appearance of single-stranded DNA are not prevented by the overexpression of Exo1p in these strains, suggesting that this nuclease is not simply redundant with Rad27p. Our data thus provide in vivo evidence for the types of DNA lesions predicted to occur when lagging-strand synthesis is deficient and suggest that Dna2p and Rad27p collaborate in the processing of Okazaki fragments.  相似文献   

6.
The range of specificity of the rev2-1 mutation, an allele that reduces the frequency of ochre revertants induced by UV in Saccharomyces cerevisiae (LEMONTT 1971a), has been investigated by examining its influence on the reversion of eleven well-defined and contrasting cyc1 mutations. We have shown, in support of a suggestion of LEMONTT (1971a), that the REV2 gene product is concerned only with the reversion of ochre alleles; it plays virtually no role in the reversion of amber, missense or frameshift mutations. We have also shown that its effect is specific and confined to only some highly revertible ochre alleles. The REV2 gene product appears to enhance reversion at these sites by facilitating the conversion of two otherwise nonmutagenic photo-products into a single premutational lesion. UV-induced killing of rev2-1 strains was found to be significantly greater on fermentable rather than on nonfermentable media.  相似文献   

7.
D. Zhu  J. G. Scandalios 《Genetics》1992,131(4):803-809
Superoxide dismutases (SOD) are ubiquitous in aerobic organisms and are believed to play a significant role in protecting cells against the toxic, often lethal, effect of oxygen free radicals. However, direct evidence that SOD does in fact participate in such a protective role is scant. The MnSOD-deficient yeast strain (Sod2d) offered an opportunity to test the functional role of one of several SOD isozymes from the higher plant maize in hopes of establishing a functional bioassay for other SODs. Herein, we present evidence that MnSOD functions to protect cells from oxidative stress and that this function is conserved between species. The maize Sod3 gene was introduced into the yeast strain Sod2d where it was properly expressed and its product processed into the yeast mitochondrial matrix and assembled into the functional homotetramer. Most significantly, expression of the maize Sod3 transgene in yeast rendered the transformed yeast cells resistant to paraquat-induced oxidative stress by complementing the MnSOD deficiency. Furthermore, analyses with various deletion mutants of the maize SOD-3 transit peptide in the MnSOD-deficient yeast strain indicate that the initial portion (about 8 amino acids) of the maize transit peptide is required to direct the protein into the yeast mitochondrial matrix in vivo to function properly. These findings indicate that the functional role of maize MnSOD is conserved and dependent on its proper subcellular location in the mitochondria of a heterologous system.  相似文献   

8.
Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative.In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated.Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction.The first step is to prepare haploid single-mutants termed ''ProMonsters,'' each of which carries a GFP reporter in a deleted locus and one of the ''toolkit'' loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids.The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.  相似文献   

9.
The CYC7–1 mutation in the yeast Saccharomyces cerevisiae causes the production of approximately 30 times the normal amount of iso-2-cytochrome c. Genetic analysis established that the CYC7–1 mutation is a reciprocal translocation involving the left arm of chromosome V and the right arm of chromosome XVI. The chromosome V arm was broken adjacent to the gene CYC7, which determines the primary structure of iso-2-cytochrome c, and this fragment containing the CYC7 gene was joined to the segment of chromosome XVI. It appears as though the elevation of iso-2-cytochrome c is caused by an abnormal controlling region adjacent to the structural region of the CYC7 gene.  相似文献   

10.
11.
Capped mRNA Degradation Intermediates Accumulate in the Yeast spb8-2 Mutant   总被引:8,自引:0,他引:8  
mRNA in the yeast Saccharomyces cerevisiae is primarily degraded through a pathway that is stimulated by removal of the mRNA cap structure. Here we report that a mutation in the SPB8 (YJL124c) gene, initially identified as a suppressor mutation of a poly(A)-binding protein (PAB1) gene deletion, stabilizes the mRNA cap structure. Specifically, we find that the spb8-2 mutation results in the accumulation of capped, poly(A)-deficient mRNAs. The presence of this mutation also allows for the detection of mRNA species trimmed from the 3′ end. These data show that this Sm-like protein family member is involved in the process of mRNA decapping, and they provide an example of 3′-5′ mRNA degradation intermediates in yeast.  相似文献   

12.
Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 produced a larger amount of succinate and acetate, with marked differences in the level of these compounds between industrial and nonindustrial engineered strains. Acetoin and 2,3-butanediol formation was enhanced with significant variation between strains and in relation to the level of glycerol produced. Wine strains overproducing glycerol at moderate levels (12 to 18 g/liter) reduced acetoin almost completely to 2,3-butanediol. A lower biomass concentration was attained by GPD1-overexpressing strains, probably due to high acetaldehyde production during the growth phase. Despite the reduction in cell numbers, complete sugar exhaustion was achieved during fermentation in a sugar-rich medium. Surprisingly, the engineered wine yeast strains exhibited a significant increase in the fermentation rate in the stationary phase, which reduced the time of fermentation.  相似文献   

13.
14.
为了研究乙型脑炎病毒持续感染株preM区域基因序列变异及其意义,我们将两种乙脑病毒野生株(JaGAr-01株和Nakayama株)分别感染人肝癌KN73细胞,经过多次细胞传代后建立乙脑病毒持续感染模型,收集感染细胞经反复冻融获取变异病毒。利用preM区特异引物进行RT-PCR法得到两种病毒的preM区基因片段,应用基因测序反应进行序列分析,并对两种病毒株preM区序列进行比较。preM区基因测序结果显示,与JaGAr-01野生株比较,JaGAr-01持续感染变异株(JaG-per)有1个核苷酸上碱基发生变异(第26位U→G)并导致相应氨基酸发生置换(第9位亮氨酸→精氨酸);Nakayama持续感染变异株(Nak-per)与其野生株相比则有11个核苷酸上碱基存在差异(第26位U→G,第37位G→A,第39位C→U,第45位U→C,第51位U→C,第99位U→C,第126位U→C,第165位C→U,第189位C→U,第195位C→U,第198位U→C),但仅有其中第26位、第37位、第39位的碱基变异引起相应编码的氨基酸发生置换(第9位亮氨酸→精氨酸及第13位缬氨酸→异亮氨酸)。对比还发现变异后的JaGAr-01持续感染株与Nakayama持续感染株的基因序列相同。认为乙脑病毒持续感染变异株preM区存在基因变异,这种变异可能与该区参与病毒持续感染及维持病毒生物学特性有关。  相似文献   

15.
In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx1 mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx1 is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx1 is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc3 mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one.  相似文献   

16.
乙脑病毒持续感染株preM区序列分析   总被引:1,自引:0,他引:1  
为了研究乙型脑炎病毒持续感染株preM区域基因序列变异及其意义,我们将两种乙脑病毒野生株(JaGAr-01株和Nakayama株)分别感染人肝癌KN73细胞,经过多次细胞传代后建立乙脑病毒持续感染模型,收集感染细胞经反复冻融获取变异病毒.利用preM区特异引物进行RT-PCR法得到两种病毒的preM区基因片段,应用基因测序反应进行序列分析,并对两种病毒株preM区序列进行比较.preM区基因测序结果显示,与JaGAr-01野生株比较,JaGAr-01持续感染变异株(JaG-per)有1个核苷酸上碱基发生变异(第26位U→G)并导致相应氨基酸发生置换(第9位亮氨酸→精氨酸);Nakayama持续感染变异株(Nak-per)与其野生株相比则有11个核苷酸上碱基存在差异(第26位U→G,第37位G→A,第39位C→U,第45位U→C,第51位U→C,第99位U→C,第126位U→C,第165位C→U,第189位C→U,第195位C→U,第198位U→C),但仅有其中第26位、第37位、第39位的碱基变异引起相应编码的氨基酸发生置换(第9位亮氨酸→精氨酸及第13位缬氨酸→异亮氨酸).对比还发现变异后的JaGAr-01持续感染株与Nakayama持续感染株的基因序列相同.认为乙脑病毒持续感染变异株preM区存在基因变异,这种变异可能与该区参与病毒持续感染及维持病毒生物学特性有关.  相似文献   

17.
In females of Df(1)v-L4/+(0/+) genotype, the presence of the wild-type allele ofsmall bristles (sbr) gene in a single dose has no significant effect on their fecundity, whereas a reduced dose of the temperature-sensitive allele sbr 10 (l(1)ts403) causes a strong sterilizing effect in females Df(1)v-L4/sbr 10 (0/sbr 10) at permissive temperature. We studied the contribution to this effects of the following factors: resorption of egg chambers, decreased oviposition, offspring death at the embryonic and larval stages, and reduced fecundity in females 0/sbr 10. Sterilizing effect of the mutant sbr 10 allele proved to be primarily caused by offspring lethality at the embryonic and first-instar larval stages. In 0/+ females, the majority of undeveloped eggs contained embryos that perished at the late developmental stages, whereas in females 0/sbr 10, at least 50% of undeveloped egg showed no visible signs of development or the embryo development was arrested at early stages of embryogenesis. The results obtained suggest insufficiency of the temperature-sensitive allele sbr 10 in haploid state to ensure the reproductive functions of Drosophila melanogaster females.  相似文献   

18.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

19.
20.
A procedure for the large-scale enzymatic synthesis of beta-carboxymuconate is described. When used as a growth substrate, beta-carboxymuconate selected for mutant strains of Pseudomonas putida that were permeable to polycarboxylic acid intermediates of the beta-ketoadipate pathway. One mutant organism, strain PRS2110, was investigated in detail. It differed from the parental strain in that it possessed a beta-carboxymuconate uptake system that was formed when the compound was supplied exogenously to the cells. The uptake system was not induced by beta-carboxymuconate supplied endogenously during growth with p-hydroxybenzoate. These observations suggested that beta-carboxymuconate was contained within a physical compartment of enzymes during growth with p-hydroxybenzoate. Support for this hypothesis came from the demonstration that enzymes of the beta-ketoadipate pathway were held together by weak chemical interactions during the chromatography of crude extracts of benzoategrown P. putida on diethylaminoethyl-cellulose columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号