首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P W So  B J Fuller 《Cryobiology》2001,42(4):307-313
The hepatic uptake of histidine and carnosine (histidyl-alanine), used as buffer agents in four preservation solutions, was studied during 24-h hypothermic storage of rat livers by use of (1)H nuclear magnetic resonance (NMR) spectroscopy. Results demonstrated that there was a progressive, concentration-linked passive diffusion of histidine into liver tissues throughout the storage period. A similar inward diffusion of carnosine was also noted. Of the carbohydrate osmotic buffers in the preservation solutions, mannitol permeated the liver tissues to a greater degree and more rapidly than raffinose after the flushing with equivalent concentrations and storage at hypothermia. In general, many solutes from preservation solutions will increasingly penetrate the hepatic inter- and intracellular spaces during extended hypothermic preservation and (1)H NMR spectroscopy is one technique that can assist in the identification of these changes.  相似文献   

2.
The hepatic uptake of histidine and carnosine (histidyl-alanine), used as buffer agents in four preservation solutions, was studied during 24-h hypothermic storage of rat livers by use of 1H nuclear magnetic resonance (NMR) spectroscopy. Results demonstrated that there was a progressive, concentration-linked passive diffusion of histidine into liver tissues throughout the storage period. A similar inward diffusion of carnosine was also noted. Of the carbohydrate osmotic buffers in the preservation solutions, mannitol permeated the liver tissues to a greater degree and more rapidly than raffinose after the flushing with equivalent concentrations and storage at hypothermia. In general, many solutes from preservation solutions will increasingly penetrate the hepatic inter- and intracellular spaces during extended hypothermic preservation and 1H NMR spectroscopy is one technique that can assist in the identification of these changes.  相似文献   

3.
Baicu SC  Taylor MJ 《Cryobiology》2002,45(1):33-48
Control of acidity and preventing intracellular acidosis are recognized as critical properties of an effective organ preservation solution. Buffer capacity and efficiency are therefore important for comparing the relative merits of preservation fluids for optimum hypothermic storage, but these parameters are not available for the variety of organ preservation solutions of interest in transplantation today. Moreover, buffer capacity is dependent upon both concentration and pH such that buffer capacity is not easily predicted for a complex solution containing multiple buffer species. Using standard electrometric methods to measure acid dissociation constants, this study was undertaken to determine the maximum and relative buffer capacities of a variety of new and commonly used hypothermic preservation solutions as a function of temperature. The reference data provided by these measurements show that comparative buffer capacity and efficiency vary widely between the commonly used solutions. Moreover, the fluids containing zwitterionic sulfonic acid buffers such as Hepes possess superior buffering for alpha-stat pH regulation in the region of physiological importance.  相似文献   

4.
The isolated-perfused dog kidney was used as a model to measure the effects of short-term hypothermic preservation on renal function and metabolism. Kidneys were cold-stored in Collins' solution, hypotonic citrate, or phosphate-buffered sucrose for 4 and 24 hr, or were continuously perfused for 4 and 24 hr with a synthetic perfusate. Following preservation kidneys were perfused with an albumin-containing perfusate at 37 degrees C for 60 min for determination of renal function. The results indicate that many of the effects of short-term preservation on renal function in dog kidneys are similar to results reported for rat and rabbit kidneys. Cold storage for 4 hr resulted in a large decrease in GFR (57%), but only a small decrease in Na reabsorption (from 97 to 87%). Cold storage for 24 hr caused a further decline in renal function (GFR = 95% decrease, Na reabsorption = 49-64%). Results were similar for all cold storage solutions tested. Perfusion for 4 hr was less damaging to renal function than cold storage. The GFR decreased only 14% and urine formation and Na reabsorption were practically normal. After 24 hr of hypothermic perfusion, the GFR was reduced by 79%, urine flow was normal, and Na reabsorption was 78%. There were no obvious biochemical correlates (adenine nucleotides, tissue edema, or electrolyte concentration) with the loss of renal function during short-term preservation. The results suggest that the isolated-perfused dog kidney can be used to test the effects of preservation on renal function, and yields results similar to those obtained using small animal models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A growing number of fish species are endangered due to human activities. A short- or long-time preservation of gametes could conserve genetic resources of threatened fish species. The aim of this study was to evaluate a hypothermic condition for short-term preservation of spermatogonia and oogonia cells isolated from immature transgenic rainbow trout, Oncorhynchus mykiss, and to determine the maximum time point for further transplantation. Viability rate of germ cells was investigated after isolation and during storage at 4 °C up to 24 h. Dulbecco's modification of Eagle's medium supplemented with Hepes fetal bovine serum and l-glutamine was used as hypothermic storage media. The results showed that while viability decreased following 24 h storage, the remaining viable cells did not vary morphologically as well as GFP intensity retained similar to those observed in freshly isolated cells. The hypothermal storage study indicated that culture medium is suitable for preserving germ cells in the short periods of time. Simplicity, easily available culture media and low cost provide new insight into hypothermic conditions for preserving and transporting of germ cells for next applied and basic studies.  相似文献   

6.
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.  相似文献   

7.
Ischemic preconditioning (IPC) is a phenomenon of protection in various tissues from normothermic ischemic injury by previous exposure to short cycles of ischemia-reperfusion. The ability of IPC to protect hepatocytes from a model of hypothermic transplant preservation injury was tested in this study. Rat hepatocytes were subjected to 30min of warm ischemia (37 degrees C) followed by 24 or 48h of hypothermic (4 degrees C) storage in UW solution and subsequent re-oxygenation at normothermia for 1h. Studies were performed with untreated control cells and cells treated with IPC (10min anoxia followed by 10min re-oxygenation, 1 cycle). Hepatocytes exposed to IPC prior to warm ischemia released significantly less LDH and had higher ATP concentrations, relative to untreated ischemic hepatocytes. IPC significantly reduced LDH release after 24h of cold storage before reperfusion and after 48h of cold storage and after 60min of warm re-oxygenation, relative to the corresponding untreated hepatocytes. ATP levels were also significantly higher when IPC was used prior to the warm and cold ischemia-re-oxygenation protocols. In parallel studies, IPC increased new protein synthesis and lactate after cold storage and reperfusion compared to untreated cells but no differences in the patterns of protein banding were detected on electrophoresis between the groups. In conclusion, IPC significantly improves hepatocyte viability and energy metabolism in a model of hypothermic preservation injury preceded by normothermic ischemia. These protective effects on viability may be related to enhanced protein and ATP synthesis at reperfusion.  相似文献   

8.
Cold storage of the whole liver at 4 degrees C in SBS and UW solution allowed to prevent from osmotic swelling of cells, which appeared at early stages of liver storage at 4 degrees C in just saline solutions. This effect of preserving solutions contributes to the preservation of quite high level of intracellular ATP content in liver at the first two stages of hypothermic storage (6 and 18 hrs), which preserves even during following normothermic reperfusion of an organ. A statistical ATP reduction in comparison with the control level (almost twice) can be explained on the one hand by the exhaustion of intracellular substrates of oxidation and on the other hand by their loss for the supporting of homeostasis under cold ischemia and following incubation of liver at 37 degrees C.  相似文献   

9.
Hypothermic preservation of hepatocytes has been widely studied for potential storage and transportation of bioartificial liver (BAL), but the liver-specific functions of hepatocytes are severely impaired by hypothermic treatment. A miniaturized gel entrapment-based BAL without circulation system was used to screen protectants from Chinese herbal medicines in this paper. Although anisodamine (ANI), matrine (MAT) and schisandrin B (Sch B) individually enhanced, to some extent, cell viability and liver-specific functions of hypothermically preserved hepatocytes, glycyrrhizic acid (GA), performed superior to these three extracts. The multieffect of GA on enhancement of mitochondrial membrane potential and inhibition of oxidative stress as well as lipid accumulation might determine its protection on hepatocytes from hypothermia-induced cell death. Furthermore, cell viability and intracellular glutathione (GSH) content decreased more dramatically at 6 h of the rewarming compared to those immediately after hypothermic preservation, indicating the aggravated cell injury by rewarming treatment. Therefore, gel entrapped hepatocytes in this study could be proposed for the throughput screening of desired conditions for hypothermic preservation of BAL.  相似文献   

10.
In culture, cytochrome P-450 levels fall rapidly with the result that hepatocytes are either used quickly or maintained in modified systems which prejudice their subsequent behaviour. In this study the effect of hypothermic preservation of hepatocytes on gelatin gels on levels of cytochrome P-450 was investigated. In marked contrast to conventional cultures, hypothermic preservation (10°) maintained, over a 6-day period, cytochrome P-450 at levels similar to those of the more stable cytochrome b5. Cell storage on gelatin at 25° was associated with a conversion of cytochrome P-450 to cytochrome P-420. The procedure at 10° provides a valuable tool for toxicity testing, hepatocyte conservation and distribution.  相似文献   

11.
BackgroundThere are currently two approaches to hypothermic preservation for most solid organs: static or dynamic. Cold storage is the main method used for static storage (SS), while hypothermic pulsatile perfusion (HPP) and other machine perfusion-based methods, such as normothermic machine perfusion and oxygen persufflation, are the methods used for dynamic preservation. HPP is currently approved for kidney transplantation.MethodsWe evaluated, for the first time, the feasibility of HPP on 11 human pancreases contraindicated for clinical transplantation because of advanced age and/or history of severe alcoholism and/or abnormal laboratory tests. Two pancreases were used as SS controls, pancreas splitting was performed on 2 other pancreases for SS and HPP and 7 pancreases were tested for HPP. HPP preservation lasted 24 h at 25 mmHg. Resistance index was continuously monitored and pancreas and duodenum histology was evaluated every 6 h.ResultsThe main finding was the complete absence of edema of the pancreas and duodenum at all time-points during HPP. Insulin, glucagon and somatostatin staining was normal. Resistance index decreased during the first 12 h and remained stable thereafter.Conclusion24 h hypothermic pulsatile perfusion of marginal human pancreas-duodenum organs was feasible with no deleterious parenchymal effect. These observations encourage us to further develop this technique and evaluate the safety of HPP after clinical transplantation.  相似文献   

12.
《Organogenesis》2013,9(3):105-112
With the successful testing of the immunosuppressive effects of cyclosporine in transplant patients in 1978, the field of organ transplants began an exponential growth. With that, the field of organ preservation became increasingly important as the need to increase preservation time and improve graft function became paramount. However, for every patient that receives a transplanted organ, there are 4 more on the waiting list. In addition, a patient dies from the lack of a transplant almost every 1½ hour. To alleviate this donor crisis, there is a need to expand the donor pool to marginal donor organs. The main reason these organs are underutilized is because the current method of static preservation, simple cold storage, is ineffective. This article will provide a general review of the methods of preservation including simple cold storage, hypothermic machine perfusion, normothermic machine perfusion, and oxygen persufflation. In addition, the article will provide a review of how these dynamic preservation methods have improved the recovery and preservation of marginal donor organs including donation after cardiac death and fatty livers.  相似文献   

13.
D.E. Pegg 《Cryobiology》1978,15(1):1-17
A selective review of the literature concerning hypothermic renal storage suggests that two major interrelated factors control the success of the various procedures that have been advocated; these are the preservation of an intact vascular endothelium and the maintenance of adequate adenine nucleotide reserves. The damaging effect of warm ischemia is ascribed primarily to microcirculatory occlusion by rigid, ATP-depleted red cells, and secondarily to other effects of adenine nucleotide deficiency. It is suggested that continuous perfusion is a valuable technique when there has been significant warm ischemia, because it provides an effective method of restoring a patent microcirculation and is also useful when prolonged storage is required, since adenine nucleotide levels are better maintained than by the available alternatives. However, careful selection of perfusates is necessary to avoid additional perfusion injury to the endothelium. The criteria for effective preservation without continuous perfusion appear to be: little if any warm ischemic injury, effective removal of blood prior to storage, and the inclusion in the washout fluid of relatively impermeant solutes that will prevent cell swelling (particularly endothelial swelling) during preservation. An integrated approach involving both “washout” and perfusion techniques is suggested.  相似文献   

14.
With the successful testing of the immunosuppressive effects of cyclosporine in transplant patients in 1978, the field of organ transplants began an exponential growth. With that, the field of organ preservation became increasingly important as the need to increase preservation time and improve graft function became paramount. However, for every patient that receives a transplanted organ, there are four more on the waiting list. In addition, a patient dies from the lack of a transplant almost every 1½ hour. To alleviate this donor crisis, there is a need to expand the donor pool to marginal donor organs. The main reason these organs are underutilized is because the current method of static preservation, simple cold storage, is ineffective. This article will provide a general review of the methods of preservation including simple cold storage, hypothermic machine perfusion, normothermic machine perfusion, and oxygen persufflation. In addition, the article will provide a review of how these dynamic preservation methods have improved the recovery and preservation of marginal donor organs including Donation after Cardiac Death and Fatty livers.  相似文献   

15.
16.
Current medical transplantation confronts major problems such as the shortage of donors and geographical restrictions that inhibit efficient utilization of finite donor organs within their storage lives. To overcome these issues, expanding organ preservation time has become a major concern. We investigated whether a strategy which best preserves organ grafts can be achieved by the use of a newly developed refrigerating chamber, which is capable of establishing a supercooled and unfrozen state stably by generating an electrostatic field in its inside. When adult rat organs such as heart, liver, and kidneys were stored in the supercooled conditions, the levels of major biochemical markers leaked from the preserved organs were significantly lower than in the ordinary hypothermic storage. No apparent tissue damages were observed histologically after the supercooled preservation. Our results suggest that the use of this supercooling refrigerator improves organ preservation and may provide an innovative technique for human organ transplantation.  相似文献   

17.
Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed.  相似文献   

18.
Hypothermic preservation of bioartificial liver (BAL) has long been appreciated in BAL storage and transportation. However, the deterioration of cell activity during hypothermia/rewarming limits its clinical use and the complete prevention of hypothermia-induced hepatocyte injury has not been achieved. In this article, a miniaturized BAL that underwent three preservation stages (i.e. pre-incubation, hypothermia and rewarming) was applied as a hypothermic preservation model to locate the protection of several protective agents against hypothermia-induced cell injury. The agents, including vitamin E, schisandrin B, glycyrrhizic acid, N-acetyl-cysteine, ruthenium red, trehalose, anisodamine, fructose-1, 6-diphosphate, cyclosporin A and matrine (Mat), were found to exert their functions at different preservation stages, which were speculated to associate with the specific protection of each agent as well as the corresponding cell injuries at each stage. Such hypothesis was further strengthened by focusing on Mat, which only suppressed the hypothermia-induced injury through the inhibition of Ca(2+) overload at the rewarming stage, whereas its presence at the hypothermic stage excessively down-regulated the cytosolic free Ca(2+) and then aggravated cell death. The results indicate that the specific cell injury at each preservation stage requires a corresponding protective agent. However, the untimely misuse of the agents may inversely aggravate cell injury.  相似文献   

19.
Effects of various preservation solutions were compared in an experimental hypothermic preservation model using cultured rat hepatocytes. Hepatocytes prepared by the collagenase perfusion method were cultured for 48 hr, then the medium in each culture dish was exchanged for various preservation solutions, and the dishes were hypothermically (0-2 degrees C) stored in a refrigerator for 12-72 hr. After the preservation period, the hepatocytes were cultured again at 37 degrees C for 2 hr. Hepatocytes' viability after 18-hr preservation and reculture was greater when they were preserved in "intracellular" rather than "extracellular" solutions. Even with Euro-Collins solution (intracellular solution), hepatocyte viability decreased to approximately 20% after 24-hr preservation, and an increase in the cellular lipid peroxide content was observed. However, when this solution contained a submillimolar concentration of calcium, lipid peroxidation was significantly suppressed and hepatocyte viability was dramatically improved. Vitamin E was almost equally effective and a marked synergistic effect was observed with calcium. Calcium was found to be capable of maintaining the cellular glutathione level during cold storage, which seems to suppress lipid peroxidation and consequently improve hepatocyte survival.  相似文献   

20.
An inexpensive modular perfused chamber (MPC) designed for low- and normal-temperature live-cell imaging is presented. The device consists of four lathed pieces of stainless steel assembled as a cylindrical open chamber that can hold either round or square glass coverslips. The chamber is connected to a thermal-bath operating with recirculation. For image acquisition at 4°C, cooled air is blown toward the coverslip surface to prevent condensation. Principal advantages of this device are thermal stability in the sample environment, rapid response to changes in temperature set point, and easy sample insertion. The device enables the study of dynamic processes in cells governed by large temperature differences such as those imposed by hypothermic preservation of cells (0-4°C) followed by rewarming to normothermia (37°C). The capabilities of the MPC were demonstrated by monitoring the internalization of fluorescent quantum dots (QDs) in rat hepatocytes after hypothermic storage and during rewarming with an inverted microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号