首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An elderly hemiplegic patient participating in an EMG biofeedback training program was observed to produce a synergistic flexion movement of the plegic (determined by functional evaluations) upper limb while yawning. In the course of the training sessions the electrical activity of the anterior deltoid (the target muscle) was recorded during yawning. These peak EMG values were greatly facilitated in comparison with the session mean peak values obtained during an attempted maximum voluntary isometric contraction (shoulder flexion) of the same limb (e.g., Trial 1: 85.00 vs. 4.33 microV). The possibility of yawning as a confounding variable in EMG biofeedback studies is presented and discussed.  相似文献   

2.
Specific Muscle EMG Biofeedback for Hand Dystonia   总被引:1,自引:0,他引:1  
Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19–62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.  相似文献   

3.
Underlying most research on biofeedback learning is a theoretical model of the processes involved. The current study tested a prediction from the Awareness Model: High initial EMG awareness should facilitate response control during EMG biofeedback training. Seventy-two undergraduates were assessed for forehead EMG awareness by asking them to produce target responses from 1.0 to 5.0 µV every 15 s for 16 trials. Based on this assessment, two groups (high and low awareness) were trained for 64 trials to produce these target levels with either EMG biofeedback, practice (no feedback), or noncontingent EMG feedback. A transfer task was identical to the initial assessment. During training, the biofeedback group deviated less from target than the practice and noncontingent groups. The biofeedback group was the only group to improve from initial EMG awareness activity. During transfer, only the low awareness biofeedback group remained below initial EMG awareness level. These findings can be interpreted in terms of the Two-Process Model.  相似文献   

4.
Maximal eccentric loading has been associated with higher levels of spindle afferent activity but lower levels of integrated EMG as compared to maximal concentric loading. Elbow flexor EMG was recorded from 17 subjects during concentric (CONC) and eccentric (ECC) elbow flexion at 70° s−1 using a Kin-Com dynamometer. We hypothesized that peak EMG amplitude would be more sensitive to fluctuations in facilitation by the spindle primary afferents via the segmental stretch reflex pathway, and that the mean EMG would be more reflective of the ongoing level of muscle activation. A ratio of peak to mean EMG (P/M EMG ratio) was predicted to be larger during maximal eccentric loading than maximal concentric loading. The peak EMG (P<0.013) and the P/M EMG ratio (P<0.001) were significantly greater during the ECC condition than the CONC condition. In a subgroup of three subjects who underwent 3 weeks of eccentrically biased weight training, EMG, peak torque and torque variability were assessed before and after training. P/M EMG ratio decreased, while peak torque and torque variability increased following the training. Differences in the P/M EMG ratio appear to reflect differences in the way eccentric and concentric muscle actions are controlled and do not simply represent less control during the eccentric task.  相似文献   

5.
The effectiveness of EMG biofeedback training for tension headache has been well established. Previous studies evaluating changes in an average EMG activity score from pre- to posttreatment have not consistently found a relationship between a reduction in average EMG activity and headache improvement at posttreatment. The current study is a preliminary analysis of the utility of EMG variance as another possible mechanism of change. Frontalis EMG average activity and variances from 6 chronic tension-type headache sufferers who demonstrated significant improvement in headache activity at posttreatment (at least 70%) and 6 chronic tension-type headache sufferers who did not demonstrate improvement (less than 30%) were examined across 6 sessions of biofeedback treatment. The improved group demonstrated larger time-specific EMG variance in relation to mean EMG amplitudes during all treatment sessions. A dramatic decline in time-specific variance was observed during the later treatment sessions for improved participants; this pattern was not observed in the group who demonstrated little or no improvement. Results from the current study suggest that the inclusion of both average EMG activity and EMG variance may provide a more comprehensive measure to evaluate possible physiological changes responsible for improvement in headache activity following EMG biofeedback training.  相似文献   

6.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

7.
Five young adults received audio biofeedback training to reduce trapezius EMG levels while they engaged in reading in an office, seated at a table. A multiple-baseline-across subjects design was employed in two separate studies. After training, all subjects demonstrated reduced EMG levels while reading in a home or library setting. The first study suggested that subjects reduced EMG levels by minimizing movements and altering their postures; the second study systematically demonstrated changes in such behavior, which was correlated with EMG levels. The data provide evidence that EMG biofeedback resulted in response generalization across several motoric classes, and in stimulus generalization from the training setting to the natural environment. The importance of assessing generalization is discussed.  相似文献   

8.
Factors that may confound comparisons between electromyographic (EMG) biofeedback training and its control conditions include feedback quality and experience of success. We investigated the usefulness of a control procedure designed to overcome these potential sources of confounding. The procedure consisted of training muscle tension stability. We used it as a control for frontal EMG relaxation training in children with asthma. To equate the groups for feedback quality and experience of success, we gave each child in the control condition audio feedback decreasing in pitch when muscle tension was at or near baseline levels, and feedback increasing in pitch when muscle tension was either substantially above or below baseline levels. Children in both groups were instructed to decrease the pitch of the tone. In comparison to children in the relaxation condition, the children in the control condition exhibited stable levels of muscle tension throughout eight training sessions. We concluded that feedback for stable muscle tension may be a useful control procedure for EMG biofeedback training whenever experimental and control procedures differ in either feedback quality of degree to which they permit subjects to experience success.This research was supported by NIH-Grant HL 27402. We are grateful to Paul Schnitter who constructed the EMG stability feedback device.  相似文献   

9.
Phantom pain is a frequent consequence of the amputation of an extremity and causes considerable discomfort and disruption of daily activities. This study describes a patient with extreme phantom limb pain following amputation of the right upper limb. The treatment consisted of 6 sessions of EMG biofeedback followed by 6 sessions of temperature biofeedback. The patient did not use a prosthesis and had not received previous treatment for chronic pain. Results demonstrated complete elimination of phantom limb pain after treatment, which was maintained at a 3- and 12-month follow-up. Pain relief covaried with increase in skin temperature at stump and perceptual telescoping (retraction of phantom limb into stump).  相似文献   

10.
The purpose of the study was to examine the potential for using the mechanomyographic (MMG) signal as a biofeedback method to enhance muscular relaxation and to improve performance during forearm flexion repetitions to fatigue. Twelve adult (mean +/- SD; age: 22.0 +/- 1.1 years) moderately trained subjects (weight: 82.3 +/- 29.2 kg; height: 165.7 +/- 49.0 cm) were instructed to relax the biceps brachii muscle using MMG biofeedback (BIO) provided by viewing a computer screen graphically displaying the MMG signal and then without using MMG biofeedback (NOBIO). Electromyographic (EMG) and MMG signals were detected midway over the biceps brachii during the relaxation protocol. In subsequent visits to the laboratory, subjects performed as many repetitions as possible at 85% of 1 repetition maximum with BIO and NOBIO using the seated preacher curl exercise. Two-way (biofeedback x gender) mixed factorial analyses of variance revealed significantly (p < 0.05) lower MMG (mean +/- SEM; BIO = 0.6 +/- 0.1 mV; NOBIO = 1.1 +/- 0.2 mV) and EMG amplitudes (BIO = 6.6 +/- 0.6 microV; NOBIO = 9.4 +/- 1.4 microV) for BIO when subjects were instructed to relax the biceps brachii muscle. There was no significant difference in the number of forearm flexion repetitions performed for BIO (mean +/- SD; 7.9 +/- 0.4 reps) vs. NOBIO (8.1 +/- 0.6 reps). The results of the present study revealed that using MMG as a biofeedback technique can enhance the development of muscle relaxation, but is not useful in delaying fatigue during forearm flexion repetitions. Our results may have been influenced by a relatively short training phase designed to teach subjects to use the MMG signal as a biofeedback method. Future studies are needed to determine whether MMG biofeedback can be used for other purposes. If MMG is found to be useful as a biofeedback method, it has some distinct practical advantages over EMG that the strength and conditioning athlete and professional may find appealing.  相似文献   

11.
12.
The use and utility of EMG biofeedback with chronic schizophrenic patients   总被引:1,自引:0,他引:1  
This study examined the efficacy of muscle relaxation training via electromyographic (EMG) biofeedback from the frontalis and forearm extensor muscles of schizophrenic inpatients. Thirty chronically hospitalized patients were randomly assigned to one of three conditions: EMG biofeedback from the forearm extensor and frontalis muscles, progressive relaxation, and a control group. Treatment consisted of one session of orientation and baseline, and six sessions of training. The results indicated that the schizophrenic patients receiving EMG training had significantly lower EMG recordings than the progressive relaxation group, which, in turn, was significantly lower than the control group. Analyses of covariance on the Tension-Anxiety scale from the Profile of Mood States revealed no significant effects, while finger-tapping rates were significantly improved only for the arm receiving feedback training in the EMG group. On the Nurses Observation Scale for Inpatient Evaluation the biofeedback group significantly improved on the Social Competence and Social Interest factors.We would like to express our appreciation for the contributions the following people made to this project: Drs. Barry Smith, Robert Steele, Agnes Hartfield, Jeffrey Barth, Althea Wagman, and the late Harold Weiner; Earl Downs and the participating staff at Springfield State Hospital Center; and Robert Kline and Michael Kelley, who performed the data analyses. This research was supported in part by a grant from the Computer Science Center at the University of Maryland.  相似文献   

13.
The Raynaud's Treatment Study (RTS) compared temperature biofeedback training and a behavioral control procedure (frontalis EMG biofeedback) with nifedipine-XL and a medication placebo for treatment of primary Raynaud's phenomenon (RP) in a large (N = 313) multicenter trial. The present study describes the RTS biofeedback protocols and presents data on the acquisition of digital skin temperature and frontalis EMG responses in the RTS. The findings point to substantial problems with acquisition of physiological self-regulation skills in the RTS. Only 34.6% of the Temperature Biofeedback group (N = 81) and 55.4% of the EMG Biofeedback group (N = 74) successfully learned the desired physiological response. In contrast, 67.4% of a Normal Temperature Biofeedback group (N = 46) learned hand warming. Multivariate analysis found that coping strategies, anxiety, gender, and clinic site predicted acquisition of hand-warming skills whereas variables related to RP disease severity did not. Physiological data showed vasoconstriction in response to the onset of biofeedback and also found that performance in the initial sessions was critical for successful acquisition. These findings indicate that attention to the emotional and cognitive aspects of biofeedback training, and a degree of success in the initial biofeedback sessions, are important for acquisition.  相似文献   

14.
During frontal EMG biofeedback training, the relationship between frontal EMG and digital skin temperature was investigated in two experiments, which varied the number of baseline and feedback sessions. The results of Experiment 1 suggested a general relaxation effect, where digital temperature increased as frontal EMG decreased, especially for subjects with initially low hand temperature. Experiment 2 extended the number of baseline and feedback sessions and qualified the results of Experiment 1. EMG and digital temperature did not simultaneously converge toward general relaxation over the extended baseline or feedback sessions in Experiment 2. Furthermore, when the feedback signal was introduced, digital temperature dropped quickly but recovered to baseline levels within three feedback sessions; this drop in digital temperature was interpreted within the context of attentional demands of the biofeedback task. The results appeared consistent with the view that frontal biofeedback training teaches a discriminative skill of lower frontal EMG, and that this skill does not readily generalize to digital skin temperature.This research was supported by Grant 2 S06RR08038-17 funded by the National Institutes of Mental Health.  相似文献   

15.
The presence of residual muscular tension has been implicated as a detrimental influence on the performance and learning of motor skills. A method for reducing muscular tension has been provided by the advent of biofeedback training. This study investigated the effects of tension-control training by electromyographic (EMG) biofeedback on learning and performance of the pursuit-rotor backing task. Thirty young adult males were pretested for pursuit-rotor (PR) tracking skill, ranked by performance scores, and divided into identical triplicates to form two experimental groups and a control group. After a total of 3 hours of EMG biofeedback training for the experimental groups, all subjects were reevaluated on the PR test. One experimental group received biofeedback during the posttests. Analysis of variance of pretest-posttest difference means andt tests of scores representing performance and tension indicated that the EMG biofeedback training (1) significantly reduced tension induced by the novel motor skill and (2) significantly improved performance of the motor skill. Transfer of tension-control training was shown to facilitate learning and performance more than direct EMG biofeedback during performance. Residual tension reduction during learning was particularly facilitated by EMG biofeedback training, a profound implication for the management of stress in a variety of situations.This investigation formed part of a Ph.D. dissertation research (1976) conducted by the author under the guidance of Dr. Donald E. Campbell, Department of Physical Education, and Dr. Carol A. Saslow, Department of Psychology, at Oregon State University.  相似文献   

16.
There are minimal data describing the between-day repeatability of EMG measurements during running. Furthermore, there are no data characterising the repeatability of surface EMG measurement from the adductor muscles, during running or walking. The purpose of this study was to report on the consistency of EMG measurement for both running and walking across a comprehensive set of lower limb muscles, including adductor magnus, longus and gracilis. Data were collected from 12 lower limb muscles during overground running and walking on two separate days. The coefficient of multiple correlation (CMC) was used to quantify waveform similarity across the two sessions for signals normalised to either maximal voluntary isometric contraction (MVIC) or mean/peak signal magnitude. For running, the data showed good or excellent repeatability (CMC = 0.87–0.96) for all muscles apart from gracilis and biceps femoris using the MVIC method. Similar levels of repeatability were observed for walking. Importantly, using the peak/mean method as an alternative to the MVIC method, resulted in only marginal improvements in repeatability. The proposed protocol facilitated the collection of repeatable EMG data during running and walking and therefore could be used in future studies investigating muscle patterns during gait.  相似文献   

17.
The purpose of this study was to evaluate the effect of patella taping in normal subjects. Previous work has established positive effects of patella taping on patellofemoral pain syndrome patients, but the mode of action remains unclear. It has been hypothesized that taping brings about subtle changes in the internal physiological environment of the joint. It could be expected that in normal joints taping would bring about a measurable change in function, as the joint is no longer operating in an optimal physiological environment. 10 normal female subject’s (21.4 ± 1.2 years) vastus medialis oblique (VMO) and vastus laterialis (VL) EMG activity and knee kinematics (peak stance flexion angle and angular velocity) were assessed during a step descent, with and without a taped patella. The effect of taping was to significantly decrease VMO and VL EMG activity. Taping also significantly reduced peak stance phase knee flexion and peak stance phase knee flexion angular velocity. In normal asymptomatic subjects patella taping created a situation in which their performance was changed to one similar to that of the pathological patellofemoral pain syndrome population. It would appear that taping caused the joint to function sub-optimally supporting the hypothesis that taping could change the functioning of the patellofemoral joint.  相似文献   

18.
The older segments of the U.S. population are expanding rapidly and account for a disproportionate amount of health care, including treatment for pain-related musculoskeletal disorders. In a prospective study with objective measures and one-year follow-up, Middaugh et al. (1988) found that older patients (55–78 yr; N=17, 76% success) treated in a multidisciplinary chronic pain rehabilitation program enjoyed a success rate equal to that of younger patients (29–48 yr; N=20, 70% success). The current study presents additional data on these two groups of patients to compare their ability to learn the physiological self-regulation skills taught in the biofeedback/relaxation component of the multimodal program. This component included progressive muscle relaxation training, diaphragmatic breathing instruction, and EMG biofeedback. Repeated measures ANOVA showed significant increases in digital skin temperature (peripheral vasodilation) and decreases in respiration rate both within and across training sessions (p values=.04 to .0001) with no differences between age groups (p>.05). EMG measures for the upper trapezius ms in patients with cervical pain showed similar deficits in muscle control at evaluation and similar improvements with biofeedback training for the two age groups. These findings indicate that older pain patients responded well to the biofeedback/relaxation training component of the multimodal pain program.This research was supported in part by NIDRR grant No. H133G90085, Department of Education, DHEW, and by the Medical University of South Carolina General Clinical Research Center under NIH grant No. RR1070.  相似文献   

19.
Therapeutic mechanisms hypothesized to underlie improvements in tension headache activity achieved with combined relaxation and eleclromyographic (EMG) biofeedback therapy were examined. These therapeutic mechanisms included (1) changes in EMG activity in frontal and trapezii muscles, (2) changes in central pain modulation as indexed by the duration of the second exteroceptive silent period (ES2), and (3) changes in headache locus of control and self-efficacy. Forty-four young adults with chronic tension-type headaches were assigned either to six sessions of relaxation and EMG biofeedback training (N = 30) or to an assessment only control group (N = 14) that required three assessment sessions. Measures of self-efficacy and locus of control were collected at pre- and posttreatment, and ES2 was evaluated at the beginning and end of the first, third, and lost session. EMG was monitored before, during, and following training trials. Relaxation/EMG biofeedback training effectively reduced headache activity: 51.7% of subjects who received relaxation/biofeedback therapy recorded at least a 50% reduction in headache activity following treatment, while controls failed to improve on any measure. Improvements in headache activity in treated subjects were correlated with increases in self-efficacy induced by biofeedback training but not with changes in EMG activity or in ES2 durations. These results provide additional support for the hypothesis that cognitive changes underlie the effectiveness of relaxation and biofeedback therapies, at least in young adult tension-type headache sufferers.  相似文献   

20.
This paper presents a case study of a 7-year-old girl with a noncompliant bladder who was trained to self-catheterize using biofeedback and behavior therapy techniques. Initial attempts to train her to self-catheterize were unsuccessful owing to excessive amounts of fear, muscle tension, and refusal. After seven treatment sessions in which she was instructed in proper self-catheterization technique by a urology nurse clinician and coached in biofeedback-assisted relaxation by a clinical psychologist, the child successfully learned to self-catheterize. EMG readings showed a decrease in quadriceps muscle tension levels across sessions. Eight additional sessions were held in order to train the child's parents in proper technique and coaching procedures. Through the use of portable biofeedback equipment during actual training sessions, the biofeedback served as a cue—first to the child and coach, and later to the child and parents—for when the child needed to stop and relax. This case illustrates the usefulness of biofeedback in a comprehensive behavioral program designed to teach self-catheterization to fearful children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号