首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大气CO2浓度升高对植物根系的影响   总被引:3,自引:0,他引:3  
植物长期生长在CO2浓度不断升高的环境中,其结构和功能都将受到影响,这种影响不仅表现在植物的地上部分,同时也表现在植物的地下部分(根系),尤其是细根的长度、直径、产量、周转以及根与枝的分配模式等方面。植物根系结构和功能的改变影响植物地上部分和生态系统物质循环中的碳动态及土壤中碳库的变化。目前有关大气CO2浓度升高对根系动态影响的研究报道主要包括大气CO2浓度升高对根系结构(直径、分枝、长度、数量等)和根系生理(周转率、产量、碳分配模式等)的影响2个方面。目前,该领域研究还存在一些不足,例如在CO2浓度升高条件下,对植物根系内部的调控机制,以及由其引起的物质循环和能量流动的动态变化的了解较少;至今没有令人信服的证据说明大气CO2浓度升高使根系周转升高还是降低。今后应加强研究在CO2浓度升高条件下根系的周转变化和光合产物分配模式变化,CO2浓度升高和外界环境因素的共同作用对根系的影响,以及采用不同研究方法和研究对象在不同立地条件下开展升高CO2浓度对根系影响的对比研究等。  相似文献   

2.
大气一氧化碳浓度升高对植物生长的影响   总被引:20,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

3.
为了探究大气CO2升高对沉水植物光合生理的影响,利用便携式植物效率分析仪(Handy PEA),在无损的情况下测定不同CO2浓度处理下的苦草(Vallisneria natans)叶绿素荧光诱导曲线,并采用JIP-test分析方法分析数据,研究CO2浓度对苦草叶片叶绿素荧光特性的影响。结果表明在实验进行60 d后,与对照相比,高CO2浓度处理下的苦草叶片PSⅡ反应中心受体侧荧光参数Vj、Mo显著升高,Sm、ψo、φEo显著降低,叶片电子传递能力减弱;K相相对可变荧光Wk显著提高,PSⅡ反应中心供体侧放氧复合体OEC受到伤害;ABS/RC、DIo/RC、TRo/RC、DIo/CSo显著升高,ETo/RC、REo/RC、ETo/CSo、REo/CSo显著降低,苦草叶片用于热耗散的能量显著增加,导致用于电子传递及传递到电子链末端的能量显著减少;性能参数Fv/Fm、PIabs显著降低,苦草叶片PSⅡ潜在活性和光合作用原初反应过程受到抑制。以上结果表明,在长期高CO2浓度处理下,苦草叶片光合机构功能受到抑制,PSⅡ反应中心活性降低,光合功能下调,发生光适应现象。  相似文献   

4.
CO2浓度升高对植物-土壤系统地下部分碳流通的影响   总被引:11,自引:1,他引:11  
目前 ,由于化石燃料的燃烧和土地利用的改变 ,每年释放到大气中的碳大约有 7Gt[2 4 ] ,其中 ,有 3Gt留在大气中 ,2Gt被固定在深海中 ,另 2Gt被植物固定在生态系统中[19,4 8] ,事实上 ,陆地生态系统中的碳大部分都贮存在土壤中[4 4 ] ,所以植物与土壤之间的碳流通对全球碳循环极为重要。大气CO2 浓度升高有可能通过生态系统中的各种生理过程来改变植物 -土壤系统中碳通量的变化 ,使输入土壤的碳量增加 ,另一方面 ,地下部分碳通量的增加使土体成为一个潜在的碳汇 ,有可能缓解大气中CO2 浓度的升高。但有关高CO2 对地下部分植物…  相似文献   

5.
自由大气CO2浓度升高对夏大豆生长与产量的影响   总被引:6,自引:0,他引:6  
IPCC报告指出到本世纪中期全球大气CO2浓度将比目前的浓度增加50%.CO2浓度升高将影响大豆的生长及产量.有关大气CO2浓度对大豆影响的研究大多在温室或开顶式气室中进行的,利用FACE (Free Air CO2 Enrichment)系统对大豆生长发育受CO2浓度升高影响的试验首次在中国进行,FACE圈中心的CO2浓度维持在(550±60)μmol·mol-1,对照浓度(389±40)μmol·mol-1.这是继美国SoyFACE之后世界第二个利用FACE系统对大豆生长发育进行的研究,研究表明:大气CO2浓度升高提高了两个大豆品种全生育期的叶、茎、荚重及地上部分总重,收获后地上部分总干重平均提高52.30%;大豆叶面积对CO2浓度升高的响应存在品种差异,中黄35促进叶面积增加而中黄13抑制叶面积的增加.CO2浓度升高使鼓粒期大豆比叶重增加,中黄35比叶重增加23.08%到达显著水平.CO2浓度升高使大豆节数、分枝数、茎粗提高,特别是茎粗收获期中黄35增加7 18%,中黄13增加26.33%,均到达显著或极显著水平;大气CO2浓度升高使两个品种产量平均增加30.93%,产量的增加主要是由于CO2浓度升高提高了大豆单株荚数和百粒重.大气CO2浓度升高对大豆各器官占地上部分重量的比例影响不明显,对大豆收获指数的影响未达显著水平.大气CO2浓度升高对大豆的影响品种差异明显.结论与美国SoyFACE的研究结果基本一致,如FACE系统下大豆生物量、产量都较对照增高,但变化幅度较SoyFACE的结果高.  相似文献   

6.
大气中不断升高的CO2浓度以及人类饮食的营养质量是目前我们面临的两个重大问题.目前,大气中CO2浓度已达到380 μmol·mo1-1,预测到2050年大气CO2浓度将达到550 μmol·mol-1.农产品的品质不仅取决于遗传基因,而且受生长环境条件的影响.大量研究表明,农作物的生长发育和产量形成都对CO2浓度升高做出了响应,而且这种变化对农产品的品质也产生了重要影响.本文对目前国内外模拟CO2浓度升高对农产品品质影响研究中采用的常见方法进行了比较,并综述了近年来在CO2浓度升高对水稻、小麦、大豆和其他一些蔬菜类农产品品质影响方面的研究进展.大量试验结果表明,CO2浓度升高条件下,大宗作物籽粒中蛋白质含量下降,微量元素总体上有下降趋势,而蔬菜类农产品的品质有一定程度改善.最后,本文根据目前研究现状对一些问题进行了讨论并提出了今后的研究方向.  相似文献   

7.
CO2浓度升高对凤梨叶片生长和光合特性的影响   总被引:14,自引:0,他引:14  
研究了CO2浓度升高对开顶式气室中凤梨叶片的生长与光合生理的影响。结果表明:高CO2浓度(1000±100μmolmol-1)下生长的凤梨植株的株高、叶面积、鲜重和干重均高于对照(360±30μmolmol-1),处理90d时分别为对照的120.19%、119.22%、177.91%和161.04%;凤梨叶片的净光合速率也增加了136%-259%,且促进了叶片中可溶性糖和淀粉的积累,但叶绿素含量则下降了33.91%。高CO2浓度处理的凤梨叶片中RuBP羧化酶活性没有明显变化,乙醇酸氧化酶活性则明显下降。  相似文献   

8.
大气中CO2浓度升高对植物的影响   总被引:6,自引:0,他引:6  
大气中CO_2浓度升高以及由此所引起的温室效应已成为人们普遍关注的议题。在未来的世界里,CO_2浓度将持续上升。预计到21世纪中叶,CO_2浓度可能达到700ppm。一些试验结果表明;CO_2浓度升高对多数植物的个体生长发育有促进作用,其中包括种子的发芽率提高,幼苗生长加快,叶面积增大,根系数量增多,气孔数量减少,茎干生长轮加宽,开花期提早,种子产量提高等。但是,CO_2浓度升高对植物也有不利影响。在高CO_2浓度环境中,由于过量产生的碳水化合物在叶片中的积累和矿物质的不平衡,许多植物在生长后期生长缓慢或出现负增长;个体生长发育规律的变化将导致一些增长种群逐渐向衰退种群过渡;C_3类杂草的加速生长将引起农业欠收;群落结构与组成的变化将促使一些植物走向绝灭;植物残渣中碳氮比的改变将引起生态系统生产力的下降等。因此,对于今后大气中CO_2浓度升高的影响还要做大量的研究。  相似文献   

9.
大气CO2浓度升高对土壤微生物的影响   总被引:18,自引:1,他引:18  
自人类进入工业化时代以来,由于化石燃料的燃烧和森林的大面积破坏,大气中CO2的浓度已由工业革命以前的280μl·L-1增加到现在的350μl·L-1,仅从1957年至今的几十年间,大气中CO2的浓度就增加了20%,预计到下个世纪下半叶,大气中CO2的...  相似文献   

10.
采用控制环境生长室,研究了CO2浓度升高对2个种植密度下红桦幼苗生长和氮(N)、磷(P)含量的影响。试验设置CO2浓度为350和700μmol.mol-12个水平,每个CO2浓度水平下又设密度28和84株.m-22个水平。结果表明:CO2浓度升高,红桦株高和叶面积指数(LAI)均增加,净同化率(NAR)值增加,叶质比(LMR)和比叶面积(SLA)均下降,但相对生长率(RGR)提高。CO2浓度增加,红桦幼苗茎枝、叶、根和总生物量提高,氮(N)、磷(P)含量降低,但单株N、P总吸收量均增加。CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。CO2浓度升高,红桦幼苗体内N、P浓度下降是由于生物量迅速增加引起的稀释效应造成的,而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。CO2浓度升高导致的植物生长的增加量会随植株密度的增加而降低,不同器官养分吸收量的增加量在低密度条件下比高密度条件下大得多,主要是因为高种植密度显著降低了植株各部位的干质量。  相似文献   

11.
CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱 (OTC) 人工控制手段研究了人工生态系统在1) 高CO2 (700±20μmol·mol-1) +高氮沉降 (100kg N·hm-2·a-1) (CN) ;2) 高CO2 (700±20μmol·mol-1) +背景氮沉降 (C+) ;3) 高氮沉降 (100kg N·hm-2·a-1) +背景CO2 (N+) ;4) 背景CO2+背景氮沉降处理 (CK) 4种处理条件下荷木 (Schima superba) 、红锥 (Castanopsis hystrix) 、海南红豆 (Ormosia pinnata) 、肖蒲桃 (Acmena acuminatissima) 、红鳞蒲桃 (Syzygium hancei) 等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明:不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累;C+处理显著促进肖蒲桃、海南红豆生物量的积累;CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累;C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累;CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所 占的权重。  相似文献   

12.
高浓度CO2下苦草的生长和生理生化反应   总被引:2,自引:2,他引:2  
对沉水植物苦草 (VallisneriaspiraslisL .)在高浓度CO2 (10 0 0 μmol/mol)和对照浓度CO2 (35 0 μmol/mol)下的生长特征和生理生化指标进行了比较研究。在实验的早期阶段 ,从冬芽出苗的苦草幼株在高浓度CO2 下生长明显加快 ,但由于后期生长逐渐放慢 ,其最终总生物量比对照组仅高出 11.6 %。尽管高浓度CO2 也促进了根的生物量的累积 ,但是由于苦草叶片生物量占总株生物量比例大 ,高浓度CO2 下苦草生物量的增加主要反映为叶片生物量的增加。在实验后期阶段 ,高浓度CO2 促进了苦草冬芽的形成。实验过程中 ,苦草的根叶生物量比 (RLR)在高浓度和对照浓度CO2 下均有所降低 ,二者之间无明显统计学差异。高浓度CO2 下苦草叶片中叶绿素含量和可溶性蛋白质含量降低 ,而可溶性总糖含量明显增加。  相似文献   

13.
高CO2浓度下4种豆科乔木种子萌发和幼苗生长   总被引:12,自引:1,他引:12       下载免费PDF全文
 本文研究了高CO2浓度(550×10-6±50×10-6)对4种豆科乔木的种子萌发和幼苗生长的影响,结果如下:(1)高CO2浓度能使光叶红豆种子萌发率提高12%,对其它种的萌发没有明显影响。(2)高CO2环境能增加4种幼苗根瘤数量,提高根瘤的固氮活性和根瘤中可溶性糖的含量。(3)在高CO2环境下生长的幼苗叶片净光合速率比对照CO2环境(约350×10-6)下生长的幼苗提高66.7%~105.9%。在高CO2浓度和对照CO2浓度下生长的幼苗,移至相同C02浓度下测定时,光合速率无明显的差异。高CO2环境下生长并测定的幼苗叶片暗呼吸速率和对照CO2浓度下生长并测定的幼苗的测值差异不大,前者较后者低5.58%~l0.55%。(4)在高CO2环境下生长的4种幼苗干物质比对照的增加29.79%~50.30%,根系增加量较大,根冠比略上升。幼苗的相对生长速率和单位叶率上升,而叶面积比率下降。(5)幼苗对高CO2环境的反应和种的生态特性有关。喜光的大叶合欢幼苗对高CO2环境的反应较大,喜光而具一定耐荫性的猴耳环幼苗次之,而耐荫的光叶红豆和茸荚红豆幼苗则较小。  相似文献   

14.
基于CTGC试验系统下面包小麦主要品质性状的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
 当前,全球气候变化背景下,CO2浓度升高和气候变暖可能已经并将持续对小麦(Triticum aestivum)品质产生影响。为此依据自行设计的模拟气候变化的试验装置系统 (CTGC),研究大田条件下CO2浓度和温度增加对面包小麦主要品质性状的交互作用。 结果表明:在433.3~610.2μmol•mol-1范围内,CO2浓度增加对面包小麦的籽粒蛋白质含量、湿面筋含量和沉降值的影响不利;增温(+2 ℃多)表现为有利。当CO2浓度从433.3 mol•mol-1逐渐增加到551.5 mol•mol-1且温度增幅逐渐为+2 ℃时,CO2和温度对面包小麦的籽粒蛋白质含量、湿面筋含量和沉降值的交互作用表现为增加;而当CO2浓度增幅较大(达到610.2 mol•mol-1),温度增幅不大(白天平均温度仅增加2℃多)时,交互作用则 表现为减少。此外,CO2浓度增加使面包小麦的醎淀粉酶活性降低,温度上升则使之提高,两因素的交互作用则表现为醎淀粉酶活性提高。  相似文献   

15.
植物光合作用对大气CO2浓度升高的反应   总被引:78,自引:1,他引:78  
林伟宏 《生态学报》1998,18(5):529-538
近年来大气中CO2浓度急剧增加使人们重新对研究CO2浓度升高对植物光合作用影响感兴趣。预计在未来的100a中,大气CO2浓度还将不断增长并达到当今的2倍。CO2排放量的增加不仅加剧了地球上的温室效应,也将改变全球生态系统中碳的平衡。离浓度CO2对植物光剑作用的影响表现为短期和长期效应。短时间地供给高浓度CO2促进阿 光合作用,而长时间生长在高浓度CO2下抒使某些植物光合能力下降,出现了光合适应现象  相似文献   

16.
 为了探讨大气CO2浓度升高对水华藻类的影响,利用水华鱼腥藻(Anabena flos_aquae)作为实验材料,研究了大气CO2浓度加倍对其生长和光合作用的影响,结果显示大气CO2浓度升高导致水华鱼腥藻的生物量、光饱和光合速率、光合效率和光系统II的光化学效率(Fv/Fm)明显提高,但对暗呼吸速率和光饱和点没有明显影响。CO2加倍条件下藻细胞光合作用对无机碳的亲和力降低,表明其利用HCO-3的能力受到抑制。  相似文献   

17.
北方粳稻光合速率、气孔导度对光强和CO2浓度的响应   总被引:25,自引:0,他引:25       下载免费PDF全文
 以东北地区主栽的粳稻(Oryza sativa var. japonica)品种为对象,用美国LI-cor公司生产的Li 6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系。结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800 μmol•mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1 600 μmol•m-2•s-1以上时,表观羧化效率也有所减小;在光强和CO2浓度协同作用下,光合速率的响应遵循双底物的米氏方程,在光强和CO2浓度均趋于饱和时,北方粳稻(品种:辽粳294)剑叶的潜在最大光合速率为71.737 8 μmol•m-2•s-1,表观量子效率为0.056 0 μmolCO2•μmol-1 photons,表观羧化效率为0.103 1 μmol•m-2•s-1/μmol•mol-1。气孔导度也随光的增强而增大,对光强的响应规律也可以用Michaelis-Menten曲线模拟,而叶面CO2浓度的提高会使气孔导度减小,气孔导度(Gs)对叶面CO2浓度(Cs)的响应可以用Gs=Gmax,c/(1+Cs/Cs0)的双曲线方程模拟。在光强(PFD)和CO2浓度协同作用下,气孔导度可以用式Gs=Gmax(PFD/PFDc)/[(1+PFD/PFDc)(1+Cs/Cs0)]+Gct估算,当CO2浓度趋于0而光强趋于饱和时,北方粳稻的潜在最大气孔导度(Gmax)为0.670 9 mol•m-2•s-1。在光强和CO2浓度协同作用下,Ball-Berry模型及其修正形式依然能很好地表达气孔导度-光合速率的耦合关系,并且用叶面饱和水汽压差(Ds)修正耦合关系中的相对湿度可以提高模拟精度。  相似文献   

18.
为了阐明CO2浓度和水环境要素变化对沉水植物生长的影响, 采用室外模拟的方法, 研究了不同磷和CO2浓度条件下苦草叶片(Vallisneria natans)光合生理特征。实验结果表明, 当水体磷浓度处于较高水平时, 苦草叶片荧光参数Vj、Mo降低, 参数ABS/CSo、DIo/CSo、TRo/CSo、RC/CS、PET显著升高, 其他荧光参数则无显著变化; 高浓度的CO2在显著降低苦草叶片Vj、ABS/RC、DIo/RC、ABS/CSo、DIo/CSo的同时, 也显著提高了苦草叶片ψo、φEo、ETo/RC、PIABS、Fv/Fm、PTR、PET的参数值, 而对其他荧光参数无显著影响; 在磷与CO2交互作用方面, 磷与CO2在Vj、Mo、ψo、TRo/CSo、RC/CS和PET处存在显著的交互作用, 其他荧光参数不显著。可见, 磷或CO2浓度变化均能显著影响苦草叶片光合生理状态, 高浓度的CO2可有效改善苦草叶片PSⅡ反应中心光化学性能、电子传递能力及单位有活性反应中心能量的分配, 从而提高苦草叶片的光合能力; 高浓度的磷可在一定程度上改善苦草叶片PSⅡ受、供体状态及电子传递性能。此外, 磷和CO2存在交互作用, 协同影响苦草叶片的光合能力。  相似文献   

19.
木本植物对CO2浓度和温度升高的相互作用的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
CO2浓度和温度是影响木本植物生长和发育的两个关键因子,二者在全球变化中的相互作用对木本植物生长和发育具有显著的影响。大多数研究表明:CO2浓度增加和温度升高的相互作用可能影响木本植物的生长发育,促进光合作用;呼吸作用对CO2浓度增加和温度升高的相互作用存在长期和短期响应差异;二者的相互作用促进生物量增加和生产力的增长。木本植物对CO2浓度和温度升高的相互作用的响应程度因植物种类而异。  相似文献   

20.
正人类在利用化石燃料的过程中会导致大量有害温室气体CO_2的排放,促进全球气候变暖。微藻可通过光合作用固定CO_2,同时大量的微藻生物质还能作为生物能源的原料[1],因此,越来越多的研究关注于微藻生物固碳以达到降低碳排放的目的。利用微藻光合作用进行CO_2固定是一种能量节约型和环境友好型技术手段[2]。在利用微藻进行CO_2生物固定以及生物燃料生产时,研究微藻的CO_2固定能力、CO_2对微藻的生长以及油脂积累的影响等都是十分重要的。国内外利用微藻进行生  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号