首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submicrometer magnetic particles, ingested by cells and monitored via the magnetic fields they generate, provide an alternative to optical microscopy for probing movement and viscosity of living cytoplasm, and can be used for cells both in vitro and in vivo. We present methods for preparing lung macrophages tagged with magnetic particles for magnetometric study. Interpretation of the data involves fitting experimental remanent-field decay curves to nonlinear mechanistic models of intracellular particle motion. The model parameters are sensitive to mobility and apparent cytoplasmic viscosity experienced by particle-containing organelles. We present results of parameter estimation for intracellular particle behavior both within control cells and after (a) variable magnetization duration, (b) incubation with cytochalasin D, and (c) particle twisting by external fields. Magnetometric analysis showed cytoplasmic elasticity, dose-dependent motion inhibition by cytochalasin D, and a shear-thinning apparent viscosity.  相似文献   

2.
The motions of magnetic particles contained within organelles of living cells were followed by measuring magnetic fields generated by the particles. The alignment of particles was sensed magnetometrically and was manipulated by external fields, allowing non-invasive detection of particle motion as well as examination of cytoplasmic viscoelasticity. Motility and rheology data are presented for pulmonary macrophages isolated from lungs of hamsters 1 d after the animals had breathed airborne gamma-Fe2O3 particles. The magnetic directions of particles within phagosomes and secondary lysosomes were aligned, and the weak magnetic field produced by the particles was recorded. For dead cells, this remanent field was constant, but for viable macrophages, the remanent field decreased rapidly so that only 42% of its initial magnitude remained 5 min after alignment. A twisting field was applied perpendicular to the direction of alignment and the rate at which particles reoriented to this new direction was followed. The same twisting was repeated for particles suspended in a series of viscosity standards. Based on this approach, the low-shear apparent intracellular viscosity was estimated to be 1.2-2.7 X 10(3) Pa.s (1.2-2.7 X 10(4) poise). Time-lapse video microscopy confirmed the alignment of ingested particles upon magnetization and showed persistent cellular motility during randomization of alignment. Cytochalasin D and low temperature both reduced cytoplasmic activity and remanent-field decay, but affected rheology differently. Magnetic particles were observed in association with the microtubule organizing center by immunofluorescence microscopy; magnetization did not affect microtubule distribution. However, both vimentin intermediate filaments and f-actin reorganized after magnetization. These data demonstrate that magnetometry of isolated phagocytic cells can probe organelle movements, rheology, and physical properties of the cytoskeleton in living cells.  相似文献   

3.
Ferrimagnetic particles suspended in saline were instilled intratracheally into the lungs of Syrian golden hamsters. The particles were magnetized and aligned by applying an external magnetic field. Upon removal of the external field, the particles produced a remanent magnetic field from the lungs which decayed due to random misalignment of the particles (relaxation). Magnetization and relaxation measurements were performed immediately after instillation, then repeatedly during the first 24 h, and finally at intervals of several days up to 30 days after the instillation. The size of the initial remanent magnetic field immediately following each external magnetization is a measure of the amount of iron oxide in the lungs. It decreased with time, reflecting particle clearance. The rate of relaxation increased steeply during the first 12 h after the instillation and decreased slowly between the 5th and 30th day. Changes in the location of particles from extracellular to intracellular sites and movements from ectoplasmic to endoplasmic sites within cells may be responsible for the observed changes in relaxation rates with time.  相似文献   

4.
Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated.  相似文献   

5.
Endothelial cells lining the vasculature share some properties with macrophages and neutrophils in that they can take up material from the blood and are known to migrate, particularly during wound healing. We observed that endothelial cells isolated from bovine pulmonary arteries ingested magnetic iron oxide particles during culture in vitro. Using a non-optical, magnetometric method, we examined motions of magnetic-particle containing intracellular vacuoles. We demonstrated that these organelles move within endothelial cells, but at a slower rate than phagosomes within macrophages. Magnetometry was used to show that incubation with endotoxin (10 micrograms/ml) for 4 hr resulted in a decrease in cytoplasmic movement; yet the fluidity of the cytoplasm was increased, as measured by intracellular particle response to forced motion. We conclude that intracellular magnetic probe particles can detect vesicular motion in endothelial cells, and that endotoxin exposure can affect endothelial cells directly, altering their physical properties; these alterations precede ultrastructural evidence of cell death.  相似文献   

6.

Background

Magnetic microparticles being ingested by alveolar macrophages can be used as a monitor for intracellular phagosome motions and cytoskeletal mechanical properties. These studies can be performed in the human lung after voluntary inhalation. The influence of cigarette smoking and lung diseases on cytoskeleton dependent functions was studied.

Methods

Spherical 1.3 μm diameter ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (40 – 65 years), 15 patients with sarcoidosis (SAR), 12 patients with idiopathic pulmonary fibrosis (IPF), and 18 patients with chronic obstructive bronchitis (COB). The retained particles were magnetized and aligned in an external 100 mT magnetic field. All magnetized particles induce a weak magnetic field of the lung, which was detected by a sensitive SQUID (superconducting quantum interference device) sensor. Cytoskeletal reorganizations within macrophages and intracellular transport cause stochastic magnetic dipole rotations, which are reflected in a decay of the magnetic lung field, called relaxation. Directed phagosome motion was induced in a weak magnetic twisting field. The resistance of the cytoplasm to particle twisting was characterized by the viscosity and the stiffness (ratio between stress to strain) of the cytoskeleton.

Results

One week after particle inhalation and later macrophage motility (relaxation) and cytoskeletal stiffness was not influenced by cigarette smoking, neither in healthy subjects, nor in the patients. Patients with IPF showed in tendency a faster relaxation (p = 0.06). Particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. The viscous shear was dominant, and only 27% of the shear recoiled and reflected viscoelastic properties. In patients with IPF, the stiffness was reduced by 60% (p < 0.02). An analysis of the shear rate and stress dependence of particle twisting allows correlating the rheological compartments to cytoskeletal subunits, in which microtubules mediate the pure viscous (non-recoverable) shear and microfilaments mediate the viscoelastic (recoverable) behavior. The missing correlation between relaxation and particle twisting shows that both stochastic and directed phagosome motion reflect different cytoskeletal mechanisms.

Conclusion

Faster relaxation and a soft cytoskeleton in patients with IPF indicate alterations in cytoskeleton dependent functions of alveolar macrophages, which may cause dysfunction's in the alveolar defense, like a slower migration, a retarded phagocytosis, a disturbed phagosome lysosome fusion and an impaired clearance.
  相似文献   

7.
In rats with CCl4-induced liver cirrhosis the clearance rate of colloid carbon particles was more than 2 times lower than in control animals. Simultaneously the uptake capacity of liver Kupffer calls falls. The number of phagocytizing liver macrophages decreased. Along with the diminished functional activity of liver macrophages in cirrhotic liver, the total number of lung and spleen macrophages increased 1.5-fold, with their uptake capacity increasing 10- and 3-fold, respectively. The nitroblue tetrazolium dye reduction and methacrylate particles uptake by alveolar macrophages in vitro rises. The liver, lung, spleen and peritoneal macrophages during liver fibrosis become less sensitive to zymosan stimulation. The incidence of zymosan-induced liver infiltrates decreases 50-fold, while in the lungs they do not develop at all. Such a decreased macrophage reactivity may be closely linked with progressing, poorly reversible liver fibrosis.  相似文献   

8.
We determined the influence of several factors on lung solute clearance using aerosolized 99mTc-diethylenetriaminepentaacetate. We used a jet nebulizer-plate separator-balloon system to generate particles with an activity median aerodynamic diameter of 1.1 micron, administered the aerosol in a standard fashion, and determined clearance half times (t1/2) with a gamma-scintillation camera. The following serial studies were performed in five anesthetized, paralyzed, intubated, mechanically ventilated dogs: 1) control, with ventilatory frequency (f) = 15 breaths/min and tidal volume (VT) = 15 ml/kg during solute clearance; 2) repeat control, for reproducibility; 3) increased frequency, with f = 25 breaths/min and VT = 10 ml/kg; 4) positive end-expiratory pressure (PEEP) of 10 cmH2O; 5) unilateral pulmonary arterial occlusion (PAO); and 6) bronchial arterial occlusion (BAO). Control t1/2 was 25 +/- 5 min and did not change in the repeat control, increased frequency, or BAO experiments. PEEP markedly decreased t1/2 to 13 +/- 3 min (P less than 0.01), and PAO increased it to 37 +/- 6 min (P less than 0.05). We conclude that clearance from the lungs by our method is uninfluenced by increased frequency, increases markedly with PEEP, and depends on pulmonary, not bronchial, blood flow.  相似文献   

9.
The kinetics and metabolism in various organs of three bioactive products of progastrin, the small sulfated and nonsulfated gastrin-6 and the large nonsulfated gastrin-52, were examined during intravenous administration in anesthetized pigs. The kidney, hindlimb, liver, head, and gut eliminated the hexapeptides efficiently, with a fractional extraction ranging from 0.50 to 0.28 (P<0.001-0.05). No metabolism was recorded in the lungs, and sulfation was without influence on the extraction of gastrin-6. Gastrin-52 was eliminated only in the kidney and the head, with a fractional extraction between 0.23 and 0.11 (P<0.01-0.05). The half-life of sulfated and nonsulfated gastrin-6 was 1.5+/-0.4 and 1.4+/-0.3 min, the metabolic clearance rate (MCR) was 80.8+/-7.6 and 116.0+/-13.5 ml x kg(-1) x min(-1) (P<0.05), and the apparent volume of distribution (V(dss)) was 199.3+/-70.1 and 231.4+/-37.3 ml/kg, respectively. The decay of gastrin-52 in plasma was biexponential. The half-lives of this biexponential after a bolus injection were 3.9+/-0.5 (T(1/2alpha)) and 25.7+/-1.4 (T(1/2beta)) min, and the MCR and V(dss) were 4.2+/-0.4 ml. kg(-1) x min(-1) and 116.2+/-16.2 ml/kg(1). We conclude that there is a differential elimination of progastrin products in splanchnic and nonsplanchnic tissue, which depends on the chain length of the peptides. Sulfation of gastrin-6 had no influence on the organ-specific extraction but reduced the MCR. Our results are in keeping with previous studies of nonsulfated gastrin-17, which is extracted in the kidney, head, limb, and gut but not in the liver.  相似文献   

10.
Bacterial magnetic particles (BMPs) are of interest as potential carriers of bioactive macromolecules, drugs, or liposomes. In this study, a high-pressure homogenizer was used to disrupt Magnetospirillum gryphiswaldense strain MSR-1 cells, and BMPs were purified. BMPs were labeled with fluorescence reagent 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocianin perchlorate (DiI) and injected into the tail vein of BALB/c nude mice. Distribution of fluorescence signals of DiI–BMPs in vivo was examined using a whole-body fluorescence imaging system. The result showed that fluorescence signals were detected in liver, stomach, intestine, lungs, and spleen. However, transmission electron microscopy of ultrathin sections indicated that BMPs were mainly present in liver and lungs, but not in the other organs. BMPs could be useful as carriers for targeted drug therapy of diseases of the liver or lung.  相似文献   

11.
The registration of ESR signals of organs and tissues in the wide range of temperatures permits to study properties and distribution of ferromagnetic particles in animal organisms. High dispersed powder (HDP) of iron (particle dimension--50-100 nm) was administered subcutaneously to mice in the doses 2 and 100 mg/kg weight of animals. One week after the administration HDP was accumulated in the animal organs under study. Two weeks after the treatment of mice with HDP in the dose of 2 mg/kg the ESR signals with g = 2.1 appeared in the animal tissues: liver, spleen, kidney, heart and lungs. Six weeks after the treatment the ESR signals of the studied tissues did not differ from those in control animals.  相似文献   

12.
Proton magnetic relaxation with measuring the time of spin-screen relaxation (T1) was used to study the time course of derangement of organ and tissue flooding after stage IIIB experimental burn of 15% body area. To examine the structures of the microcirculatory vessels, use was made of electron microscopy of the organs. The internal organs under study demonstrated a significant long-term (up to 49 days) increase in flooding: in the liver and kidneys, it occurred since the first day after burn, while in the lungs, myocardium and brain, since the 7th day. The results indicate the parallelism of the changes in the T1 and electron microscopic alterations in the histohematic barriers. Proton magnetic relaxation enables a more rapid and more convenient assay of the changes in tissue flooding as compared to the method of drying at high temperature. Therefore, it may be applied to the assessment of the efficacy of different therapeutic means.  相似文献   

13.
Rats were given 7,12-dimethylbenz(a)anthracene (DMBA) intravenously in a dose of 15 mg/kg on the 21st day of pregnancy; its content in the liver, placenta, and the fetus was determined by the fluorescent-spectral method. The maximal concentration was reached in 10--15 min in the liver and placenta of the pregnant rats (45 and 6.3 microgram/kg, respectively) in comparison with a slower (in one hour) elevation in the fetal tissues (2.4 microgram/kg). It took about 5 hours for all the tissues to be cleared of the carcinogen. One hour after the administration DMBA was unevenly distributed in various fetal organs--the maximal content in the liver, and the minimal--in the "carcass" in comparison with the content in other organs (the kidneys, lungs, brain, intestine). The results obtained failed to correlate with the data on the predominant origination of the tumours in the kidneys and the nervous system of rats in transplacental DMBA action.  相似文献   

14.
Polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late, hypodynamic phase. Although upregulation of adrenomedullin (ADM), a novel potent vasodilatory peptide, plays an important role in producing cardiovascular responses during the progression of sepsis, it remains unknown whether the clearance of this peptide is altered under such conditions. To determine this, male adult rats were subjected to sepsis by cecal ligation and puncture (CLP) followed by fluid resuscitation. At 5 h (i.e., the hyperdynamic phase of sepsis) or 20 h (the hypodynamic phase) after CLP, the animals were injected with 125I-labeled ADM through the jugular vein. Blood and tissue samples (including the lungs, kidneys, gastrointestinal tract, pancreas, spleen, mesentery, liver, brain, skeletal muscle, heart, and skin) were harvested 30 min after the injection and the radioactivity was determined. The results indicate that there were no significant alterations in tissue [125I]ADM distribution at 5 h after CLP compared to shams. At 20 h after CLP, however, there was a significant decrease in radioactivity in the lungs. In contrast, a significant increase of radioactivity was observed in all other organs except the liver and kidneys. The pulmonary distribution of [125I]ADM was found to be far greater than in any other organs tested, irrespective of the effect of sepsis. In separate groups of animals, injection of [125I]ADM into the left ventricle resulted in a significant decrease in radioactivity in the lungs of both sham and septic animals at 20 h after surgery. These results suggest that the lungs are the primary site of ADM clearance, which is significantly diminished during the late stage of sepsis. The decreased clearance of ADM by the lungs may play an important role in maintaining the sustained levels of plasma ADM under such conditions.  相似文献   

15.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

16.
Mycoplasma pneumoniae (Mp), a common cause of pneumonia, is associated with asthma; however, the mechanisms underlying this association remain unclear. We investigated the cellular immune response to Mp in mice. Intranasal inoculation with Mp elicited infiltration of the lungs with neutrophils, monocytes and macrophages. Systemic depletion of macrophages, but not neutrophils, resulted in impaired clearance of Mp from the lungs. Accumulation and activation of macrophages were decreased in the lungs of MyD88(-/-) mice and clearance of Mp was impaired, indicating that MyD88 is a key signaling protein in the anti-Mp response. MyD88-dependent signaling was also required for the Mp-induced activation of NFκB, which was essential for macrophages to eliminate the microbe in vitro. Thus, MyD88-NFκB signaling in macrophages is essential for clearance of Mp from the lungs.  相似文献   

17.
We had hypothesized that preclustered arrangement of galactose-specific receptor activity on rat liver macrophages enables these cells to internalize multivalent, particulate ligands in contrast to the clearance of molecules mediated by statistically distributed receptors on hepatocytes. We now took advantage of the nonclustered receptor distribution in newborn rat liver macrophages to study the in vivo clearance of particulate ligands. Gold particles 5, 17, and 50 nm in diameter (Au5, Au17, Au50), coated with lactosylated bovine serum albumin (LacBSA), were injected into the vena cava and livers were perfusion fixed after allowing for binding and uptake for 3 min. In sinusoidal cells from rats 15 days old LacBSA-Au5 and LacBSA-Au17 were taken up by endothelial cells and all sizes by liver macrophages. In newborn rat liver no LacBSA-Au50 or LacBSA-Au17 was retained in liver macrophages. Uptake of LacBSA-Au5 by sinusoidal cells was significant. LacBSA-Au17 was taken up in significant amounts by endothelial cells of newborn rats which correlates to the findings that galactose-specific binding sites on endothelial cells were found to localize as clusters over coated pits irrespective of age. These results demonstrate the crucial role of clustered receptors in binding and uptake of larger particulate ligands via this lectin-like binding activity.  相似文献   

18.
Administration of choline chloride (200 μmoles/kg) intravenously to guinea pigs caused an increase in the concentrations of choline and acetylcholine in adrenals, heart, kidneys, lungs, and liver within 2 min. These results suggest that raising the concentration of choline in plasma will accelerate the formation of acetylcholine in the organs cited. No significant increase in concentration of choline or acetylcholine occurred in brain.  相似文献   

19.
Does exercise alter the redistribution and clearance of particles from the lungs? Sedentary hamsters and hamsters that were exercise trained by voluntary wheel running for the previous 5 wk were exposed to a 198Au-labeled aerosol for 25 min. Six trained and 6 sedentary animals were killed within 5 min after the exposure (day 0); the same number were killed 5 days later. The trained hamsters ran ad libitum during those 5 days. The lungs of all animals were excised, dried at total lung capacity, sliced into 1-mm-thick sections, and dissected into pieces that were counted for radioactivity and weighed. On day 0, trained hamsters had 80% more particles per milligram of lung than sedentary hamsters, although both were exposed under identical conditions of restraint. After five days, exercising hamsters cleared 38% of the particles present at day 0, whereas sedentary animals removed only 15%. Significant clearance was observed from the middle lung regions of sedentary hamsters and from all lung regions in exercising hamsters. We conclude that exercise can enhance the redistribution and clearance of particles from the lungs; the mechanisms responsible are as yet unclear.  相似文献   

20.
The role of the different cytoskeletal structures like microfilaments (MF), microtubuli (MT), and intermediate filaments (IF) in phagosome motion is unclear. These cytoskeletal units play an important role in macrophage function (migration, phagocytosis, phagosome transport). We investigated ferromagnetic phagosome motions by cell magnetometry. J774A.1 macrophages were incubated with 1.3-microm spherical magnetite particles for 24 h, after which more than 90% of the particles had been phagocytized. Phagosome motions can be caused either by the cell itself (relaxation) or by applying magnetic twisting forces, yielding cell stiffness and viscoelastic properties of the cytoskeleton. Apparent viscosity of the cytoplasm was non-Newtonian and showed a shear-rate-dependent power law behavior. Elastically stored energy does not force the magnetic phagosomes back to their initial orientation: 57% of the twisting shear was not recoverable. Cytoskeletal drugs, like Cytochalasin D (CyD, 2 - 4 microM), Colchicine (CoL, 10 microM), or Acrylamide (AcL, 40 mM) were added in order to disturb the different cytoskeletal structures. AcL disintegrates IF, but affected neither stochastic (relaxation) nor directed phagosome motions. CyD disrupts MF, resulting in a retarded stochastic phagosome motion (relative decay 0.53 +/- 0.01 after 5 min versus 0.34 +/- 0.01 in control), whereas phagosome twisting shows only a small response with a 9% increase of stiffness and a small reduction of recoverable strain. CoL depolymerizes the MT, inducing a moderately accelerated relaxation (relative decay 0.28 +/- 0.01 after 5 min) and a 10% increase of cell stiffness, where the pure viscous shear is increased and the viscoelastic recoil is inhibited by 40%. Combining the two drugs conserves both effects. After disintegrating either MF or MT, phagosome motion and cytoskeletal stiffness reflect the behavior of either MT or MF, respectively. The results verify that the dominant phagosome transport mechanism is MF-associated. MT depolymerization by CoL induces an activation of the F-actin synthesis, which may induce an accelerated relaxation and an increase of stiffness. Cell mechanical properties are not modulated by MF depolymerization, whereas MT depolymerization causes a loss of viscous resistance and a loss of cell elasticity. The mean energy for stochastic phagosome transport is 5*10(-18) Joules and corresponds to a force of 7 pN on a single 1.3-microm phagosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号