首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumors are comprised of malignant cancer cells and stromal cells which constitute the tumor microenvironment (TME). Previous studies have shown that cancer associated fibroblast (CAF) in TME is an important promoter of tumor initiation and progression. However, the underlying molecular mechanisms by which CAFs influence the growth of colorectal cancer cells (CRCs) have not been clearly elucidated. In this study, by using a non-contact co-culture system between human colorectal fibroblasts (CCD-18-co) and CRCs (LoVo, SW480, and SW620), we found that fibroblasts existing in tumor microenvironment positively influenced the metabolism of colorectal cancer cells, through its autophagy and oxidative stress pathway which were initially induced by neighboring tumor cells. Therefore, our data provided a novel possibility to develop fibroblasts as a potential target to treat CRC.  相似文献   

2.
Colorectal cancer (CRC) remains one of the most common and deadly cancers. Intestinal gut microflora is important to maintain and contributes to several intestinal functions, including the development of the mucosal immune system, absorption of complex macromolecules, synthesis of amino acids/vitamins and the protection against pathogenic microorganisms. It is well known that the gut microbiota changes or dysbiosis may have an essential impact in the initiation and promotion of chronic inflammatory pathways and also have a profound different genetic and epigenetic alterations leading to dysplasia, clonal expansion, and malignant transformation. Probiotic bacteria has antitumor activity with various mechanisms such as nonspecific physiological and immunological mechanisms. This review evaluates the effects of microbiota and probiotics in clinical trials, in vitro and animal model studies that have explored how probiotic against cancer development and also discusses the possible immunomodulatory mechanisms. Several mechanisms alteration of the intestinal microflora; inactivation of cancerogenic compounds; competition with putrefactive and pathogenic microbiota; improvement of the host's immune response; antiproliferative effects via regulation of apoptosis and cell differentiation; fermentation of undigested food; inhibition of tyrosine kinase; reduces the enteropathogenic complications before and after colon cancer surgery and improve diarrhea and it's have been able to create the integrity of gut mucosal and have stimulatory effects on the systemic immune system and prevent the CRC metastasis. Research in clinical trials encouraging findings that support a role of probiotics in CRC prevention and improve the safety and effectiveness of cancer therapy even though additional clinical research is still necessary.  相似文献   

3.
结直肠癌是世界范围内的高发癌症,其发病机理尚不明确。大量研究数据表明,基因突变、表观遗传学的改变、饮食习惯以及生活方式等均是结直肠癌发生发展的高危因素。目前,普遍认为慢性炎症在肿瘤的发生发展中起重要作用。白介素17主要由T细胞的亚型Th17细胞分泌产生,能够促进肿瘤相关性炎症,使肿瘤细胞逃避免疫监控。已在胃癌、宫颈癌、食管癌、非小细胞肺癌、肝细胞肝癌、卵巢癌、黑色素瘤、淋巴瘤、乳腺癌、前列腺癌、结直肠癌等多种恶性肿瘤中发现白介素17呈高表达。现有研究表明,白介素17与肠炎和结直肠癌的发生发展密切相关。尽管尚存在争议,多数学者认为白介素17在结直肠癌的发生发展中起促进作用。本文将近年来关于IL-17在结直肠癌的发生发展中的作用以及其与结直肠癌的预后的研究成果进行总结。  相似文献   

4.
5.
Colorectal cancer (CRC) is one of the most frequent cancer in numerous of countries worldwidely. The initiation and progression of CRC is an extremely complex process, and have been suggested a correlation with Long non-coding RNAs (lncRNAs). Our results showed that lncRNA-422(ENST00000415820) significantly downregulated in the tissues and serum of CRC patients, and is closely associated with the poor prognosis. Then gain or loss of lncRNA-422 models in SW480 and SW620cells were established. The results showed that lncRNA-422 overexpression inhibited cell proliferation, migration, and invasion. Knockdown of lncRNA-422 promoted tumorigensis. Western blot and qRT-PCR were performed to examine the activity of the PI3K/AKT/mTOR pathway in CRC cells after alternation of lncRNA-422. Results showed that lncRNA-422 acts as a tumor suppressor by PI3K/AKT/mTOR pathway in CRC.  相似文献   

6.
7.
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’.  相似文献   

8.
Colorectal cancer (CRC) is one of the most common cancers worldwide, which ranks third in terms of incidence and the second leading cause of cancer-related mortality. Metabolic reprogramming within the tumor microenvironment (TME) has been proved intimately involved in the initiation and malignant progression of CRC. Signal messengers, including cytokines, metabolites, and exosomes among others, derived from cancer cells can be utilized by the surrounding cells within the TME to induce metabolic alteration and cancer-associated transformation. In turn, the cargos secreted from cancer-associate cells further provide the nutrition and energy supply for cancer cells, supporting their metabolic reprogramming to promote proliferation, migration, metastasis, and radiochemoresistance.In this review, we focus on the main cellular components in the TME: CAFs, TAMs, lymphocytes and neutrophils, and enumerate and integrate how the metabolic interactions between these components and cancer cells reshape TME to foster CRC malignancy.  相似文献   

9.
The tumor microenvironment(TME) is complex and constantly evolving. This is due, in part, to the crosstalk between tumor cells and the multiple cell types that comprise the TME, which results in a heterogeneous population of tumor cells and TME cells. This review will focus on two stromal cell types, the cancerassociated adipocyte(CAA) and the cancer-associated fibroblast(CAF). In the clinic, the presence of CAAs and CAFs in the TME translates to poor prognosis in multiple tumor types. CAAs and CAFs have an activated phenotype and produce growth factors, inflammatory factors, cytokines, chemokines, extracellular matrix components, and proteases in an accelerated and aberrant fashion. Through this activated state, CAAs and CAFs remodel the TME, thereby driving all aspects of tumor progression, including tumor growth and survival, chemoresistance, tumor vascularization, tumor invasion, and tumor cell metastasis. Similarities in the tumorpromoting functions of CAAs and CAFs suggest that a multipronged therapeutic approach may be necessary to achieve maximal impact on disease. While CAAs and CAFs are thought to arise from tissues adjacent to the tumor, multiple alternative origins for CAAs and CAFs have recently been identified. Recent studies from our lab and others suggest that the hematopoietic stem cell, through the myeloid lineage, may serve as a progenitor for CAAs and CAFs. We hypothesize that the multiple origins of CAAs and CAFs may contribute to the heterogeneity seen in the TME. Thus, a better understanding of the origin of CAAs and CAFs, how this origin impacts their functions in the TME, and thetemporal participation of uniquely originating TME cells may lead to novel or improved anti-tumor therapeutics.  相似文献   

10.
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.  相似文献   

11.
Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host–microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.  相似文献   

12.
13.
14.
Development of ovarian cancer involves the co-evolution of neoplastic cells together with the adjacent microenvironment. Steps of malignant progression including primary tumor outgrowth, therapeutic resistance, and distant metastasis are not determined solely by genetic alterations in ovarian cancer cells, but considerably shaped by the fitness advantage conferred by benign components in the ovarian stroma. As the dynamic cancer topography varies drastically during disease progression, heterologous cell types within the tumor microenvironment (TME) can actively determine the pathological track of ovarian cancer. Resembling many other solid tumor types, ovarian malignancy is nurtured by a TME whose dark side may have been overlooked, rather than overestimated. Further, harnessing breakthrough and targeting cures in human ovarian cancer requires insightful understanding of the merits and drawbacks of current treatment modalities, which mainly target transformed cells. Thus, designing novel and precise strategies that both eliminate cancer cells and manipulate the TME is increasingly recognized as a rational avenue to improve therapeutic outcome and prevent disease deterioration of ovarian cancer patients.  相似文献   

15.
The tumor microenvironment (TME), consisting of stromal fibroblasts, immune cells, cancer cells and other cell types, plays a crucial role in cancer progression and metastasis. M2 macrophages and activated fibroblasts (AFs) modulate behavior of cancer cells in the TME. Since nutritional effects on cancer progression, including colorectal cancer (CRC), may be mediated by alterations in the TME, we determined the ability of β-carotene (BC) to mediate anti-cancer effects through regulation of macrophage polarization and fibroblast activation in CRC. The M2 macrophage phenotype was induced by treating U937 cells with phorbol-12-myristate-13-acetate and interleukin (IL)-4. Treatment of these M2 macrophages with BC led to suppression of M2-type macrophage-associated markers and of the IL-6/STAT3 signaling pathway. In separate experiments, AFs were induced by treating CCD-18Co cells with transforming growth factor-β1. BC treatment suppressed expression of fibroblast activation markers. In addition, conditioned media from BC-treated M2 macrophages and AF inhibited cancer stem cell markers, colon cancer cell invasiveness and migration, and the epithelial-mesenchymal transition (EMT). In vivo, BC supplementation inhibited tumor formation and the expression of M2 macrophage markers in an azoxymethane/dextran sodium sulfate-induced colitis-associated CRC mouse model. To our knowledge, the present findings provide the first evidence suggesting that the potential therapeutic effects of BC on CRC are mediated by the inhibition of M2 macrophage polarization and fibroblast activation.  相似文献   

16.
Colorectal cancer (CRC) is the second most common gastrointestinal cancer globally. Prevention of tumor cell proliferation and metastasis is vital for prolonging patient survival. Polyphenols provide a wide range of health benefits and prevention from cancer. In the gut, urolithins are the major metabolites of polyphenols. The objective of our study was to elucidate the molecular mechanism of the anticancer effect of urolithin A (UA) on colorectal cancer cells. UA was found to inhibit the cell proliferation of CRC cell lines in a dose-dependent and time-dependent manner in HT29, SW480, and SW620 cells. Exposure to UA resulted in cell cycle arrest in a dose-dependent manner along with alteration in the expression of cell cycle–related protein. Treatment of CRC cell lines with UA resulted in the induction of apoptosis. Treatment of HT29, SW480, and SW620 with UA resulted in increased expression of the pro-apoptotic proteins, p53 and p21. Similarly, UA treatment inhibited the anti-apoptotic protein expression of Bcl-2. Moreover, exposure of UA induced cytochrome c release and caspase activation. Furthermore, UA was found to generate reactive oxygen species (ROS) production in CRC cells. These findings indicate that UA possesses anticancer potential and may be used therapeutically for the treatment of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01189-8.  相似文献   

17.
The stroma is a main driver of metastasis and aggressiveness in pancreatic cancer (PC), one of the deadliest malignancies worldwide. Pancreatic stellate cells (PSCs) form approximately 50% of the pancreatic tumor stroma, causing desmoplasia, extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT) and metastatic spread. Furthermore, activated PSCs can remodel the pancreatic tumor microenvironment (TME) via dynamic and complex interactions and feedback loops with PC cells, thus facilitating tumor growth through various signalling and immune pathways. Hence, increased understanding of these cellular cross-talks and how they shape the TME in PC might guide the development of novel treatment approaches against this stubborn and deadly malignancy that has so far resisted therapeutic advances. In this review, we will explore the role of the stroma and PSCs in PC development, invasion and metastasis, examine their interaction with PC cells and discuss potential treatment approaches aimed at targeting PSCs in order to reprogram the pancreatic tumor environment.  相似文献   

18.
Much of our current state of knowledge pertaining to the mechanisms controlling intestinal epithelial homeostasis derives from epidemiological, molecular genetic, cell biological, and biochemical studies of signaling pathways that are dysregulated during the process of colorectal tumorigenesis. Activating mutations in members of the RAS oncoprotein family play an important role in the progression of colorectal cancer (CRC) and, by extension, intestinal epithelial homeostasis. Mutations in K-RAS account for 90% of the RAS mutations found in CRC. As such, the study of RAS protein function in the intestinal epithelium is largely encompassed by the study of K-RAS function in CRC. In this review, we summarize the data available from genetically defined in vitro and in vivo models of CRC that aim to characterize the oncogenic properties of mutationally activated K-RAS. These studies paint a complex picture of a multi-functional oncoprotein that engages an array of downstream signaling pathways to influence cellular behaviors that are both pro- and anti-tumorigenic. While the complexity of K-RAS biology has thus far prevented a comprehensive understanding of its oncogenic properties, the work to date lays a foundation for the development of new therapeutic strategies to treat K-RAS mutant CRC.  相似文献   

19.
20.
Colorectal cancer(CRC)and hepatocellular carcinoma(HCC)are the second and third most common causes of death by cancer,respectively.The etiologies of the two cancers are either infectious insult or due to chronic use of alcohol,smoking,diet,obesity and diabetes.Patho-logical changes in the composition of the gut microbiota that lead to intestinal inflammation are a common factor for both HCC and CRC.However,the gut microbiota of the cancer patient evolves with disease pathogenesis in unique ways that are affected by etiologies and envi-ronmental factors.in this review,we examine the chan-ges that occur in the composition of the gut microbiota across the stages of the HCC and CRC.Based on the idea that the gut microblota are an additional"lifeline"and contribute to the tumor microenvironment,we can observe from previously published literature how the microbiota can cause a shift in the balance from normal→ inflammation → diminished inflammation from early to later disease stages.This pattern leads to the hypothesis that tumor survival depends on a less pro-inflammatory tumor microenvironment.The differences observed in the gut microbiota composition between different disease etiologies as well as between HCC and CRC suggest that the tumor microenvironment is unique for each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号