首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre‐clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over‐production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC‐based therapies into clinical application for patients with ALI.  相似文献   

2.
3.
Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat "fixed volume" model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.  相似文献   

4.
Decreased circulating protein C and increased circulating thrombomodulin are markers of the prothrombotic, antifibrinolytic state associated with poor outcomes in sepsis but have not been measured in patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome). We measured circulating and intra-alveolar protein C and thrombomodulin in 45 patients with ALI/ARDS from septic and nonseptic causes and correlated the levels with clinical outcomes. Plasma protein C levels were lower in ALI/ARDS compared with normal. Lower levels of protein C were associated with worse clinical outcomes, including death, fewer ventilator-free days, and more nonpulmonary organ failures, even when only patients without sepsis were analyzed. Levels of thrombomodulin in pulmonary edema fluid from ALI/ARDS patients were >10-fold higher than normal plasma and 2-fold higher than ALI/ARDS plasma. Higher edema fluid thrombomodulin levels were associated with worse clinical outcomes. The higher levels in edema fluid compared with plasma suggest local release of soluble thrombomodulin in the lung, possibly from a lung epithelial source. To determine whether lung epithelial cells can release thrombomodulin, A549 cells and primary isolates of human alveolar type II cells were exposed to H2O2 or inflammatory cytokines. Both epithelial cell types released thrombomodulin into the media. In summary, the protein C system is markedly disrupted in patients with ALI/ARDS from both septic and nonseptic causes. The protein C system may be a potential therapeutic target in patients with ALI/ARDS.  相似文献   

5.
Acute respiratory distress syndrome (ARDS) can be associated with various disorders. Among these, coronavirus infection may cause life-threatening severe acute respiratory syndrome (SARS). In this review, we present animal models and techniques for the study of ARDS, and discuss the roles and possible mechanisms of various chemical factors, including nitric oxide (NO). Our early work revealed that cerebral compression elicits severe hemorrhagic pulmonary edema (PE), leading to central sympathetic activation that results in systemic vasoconstriction. The consequence of systemic vasoconstriction is volume and pressure loading in the pulmonary circulation. Vasodilators, but not oxidant radical scavengers, are effective in the prevention of centrogenic PE. In isolated perfused lung, exogenous and endogenous NO enhances lung injury following air embolism and ischemia/reperfusion. In contrast, NO synthase (NOS) inhibitors reverse such lung injury. Although NO is important in maintaining vasodilator tone, hypoxia-induced pulmonary vasoconstriction is accompanied by an increase instead of a decrease in NO release. In animal and isolated lung studies, endotoxin produces acute lung injury that is associated with increases in cytokines and inducible NOS mRNA expression, suggesting that NO is toxic to the lung in endotoxin shock. Recently, we reported several rare cases that indicate that ARDS in patients with Japanese B encephalitis, lymphangitis with breast cancer and fat embolism is caused by different mechanisms. Our early and recent studies on ARDS and PE may provide information for clinical practice and the understanding of the pathogenesis of SARS.  相似文献   

6.
The reported pluripotential capabilities of many human stem cell types has made them an attractive area of research, given the belief they may hold considerable therapeutic potential for treating a wide range of human diseases and injuries. Although the bulk of stem cell based research has focused on developing procedures for the treatment of pancreatic, neural, cardiovascular and haematopoietic diseases, the potential for deriving respiratory cell types from stem cells for treatment of respiratory specific diseases has also been explored. It is suggested that stem cell derivatives may be used for lung replacement/regeneration therapeutics and high though-put pharmacological screening strategies for a variety of respiratory injuries and diseases including: cystic fibrosis, chronic obstructive pulmonary disease, respiratory distress syndrome, pulmonary fibrosis and pulmonary edema. This review will explore recent progress in characterizing adult respiratory and bone marrow derived stem cells with respiratory potential as well as the endogenous mechanisms directing the homing of these cells to the diseased and injured lung. In addition, the potential for embryonic stem cell based therapies in this domain as well as the histological, anatomical and molecular aspects of respiratory development will be summarized.  相似文献   

7.
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.  相似文献   

8.
Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.  相似文献   

9.
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI.  相似文献   

10.
11.
间充质干细胞特性与应用前景   总被引:3,自引:0,他引:3  
仵敏娟  刘善荣  刘厚奇 《生命科学》2004,16(3):135-137,169
间充质干细胞是中胚层发育的早期细胞,具备干细胞的基本特性。在发育的不同阶段和特定环境条件下,间充质干细胞可向骨、软骨、肌肉、神经、血管及血液细胞等多种方向分化。在成体的很多器官和组织中也存在着间充质干细胞,以备修复和再生所用。间充质干细胞易于体外培养,扩增迅速,可以分化为多种细胞,为干细胞生物工程提供了一个很好的种子细胞。在明确间充质干细胞生物学特性和分化的机制后,可在体外和体内将其定向诱导分化为多种细胞。间充质干细胞具有巨大的临床应用价值和科学研究价值。  相似文献   

12.
当前因SARS-CoV-2感染而引起的2019新型冠状病毒肺炎(COVID-19)肆虐全球,严重危害人类健康。SARS-CoV-2感染性强,危重症患者死亡率高,尽管各种各样的治疗正在进行临床试验,但目前尚无有效的治疗方法。间充质干细胞(mesenchymal stem cell,MSC)在临床前试验中对多种疾病有良好的治疗效果,因而受到了广泛地关注。MSC可能利用分化潜能诱导分化成功能性肺样细胞、免疫调节与免疫细胞互作、抑制炎症来降低促炎细胞因子分泌、迁移和归巢靶向损伤肺部、抗病毒作用来减少肺上皮细胞中的病毒复制、产生细胞外囊泡来修复受损的组织,进而使COVID-19患者肺功能逐渐恢复正常,缓解并达到治疗COVID-19的目的。综合讨论了COVID-19的基本特征和当前主要治疗手段,同时总结了MSC在COVID-19中的临床研究和当前面临的挑战,探讨了MSC治疗COVID-19的应用前景,为MSC在COVID-19中的治疗提供了理论基础和现实依据。  相似文献   

13.
间充质干细胞(mesenchyrmalstemcells,MSCs)是当前在多种组织再生和细胞治疗研究中被最广泛采用的一类干细胞。但如何诱导MSCs的体外高效扩增并维持其干性特征(stemness),从而为临床应用提供充足、优质的细胞源,是当前基础研究和临床治疗中遇到的瓶颈问题。日益增多的研究表明,机体内干细胞的自我更新与分化受其所处体内微环境的紧密调控。因此,精确模拟干细胞在体内生长的微环境已成为提高干细胞体外扩增效率的重要策略。该文就近期研究中如何模拟干细胞生长微环境诱导MSCs体外扩增并维持干细胞特性的研究做一综述,为今后MSCs的高效扩增和推进临床运用与转化提供思路。  相似文献   

14.
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties.  相似文献   

15.
急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是常见的临床综合征,绝大多数ALI/ARDS患者需机械通气治疗,机械通气在提供可接受的肺部气体交换的同时治疗基础疾病,但机械通气本身也会引起肺部损伤,即机械通气性肺损伤(VILI)。而通过调整机械通气参数的设置,使用保护性通气策略可显著减低ALI/ARDS患者机械通气性肺损伤程度,从而减少肺部感染,缩短机械通气时间和住院时间,降低28天死亡率,明显改善ALI/ARDS患者的生存质量,起到最大程度地肺保护作用。本文从气道平台压,通气容积,呼气末正压等几个不同通气参数方面分别进行综述,讨论ALI/ARDS患者机械通气时使用保护性通气策略对于肺部损伤的影响。  相似文献   

16.
《Cytotherapy》2022,24(8):755-766
Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.  相似文献   

17.
18.
Recently a growing attention in scientific community has been gathered on potential application of mesenchymal stem cells (MSCs) in various fields of medicine. Owing to the fact that they can be easily isolated from different sources, and simply proliferated in large quantities while keeping their original biological characteristics, they can be successfully used as cell-based therapeutics. Engineering MSCs and other type of stem cells to be carriers of therapeutic agents is a new tactic in the targeted gene and cell therapy of cancers and degenerative diseases. Various useful properties of MSCs including tropism toward tumor/injury site(s), weakly immunogenic, production of anti-inflammatory molecules, and safety against normal tissues have made them prone for regenerative medicine, targeted therapy and treating injured tissues, and immunological abnormalities. In this review, we introduce latest advances, methods, and applications of MSCs in gene therapy of various malignant organ disorders. Additionally, we will cover the problems and challenges which researchers have faced with when trying to translate their basic experimental findings in MSCs research to clinically applicable therapeutics.  相似文献   

19.
VEGFs and their receptors have been implicated in the regulation of vascular permeability in many organ systems, including the lung. Increased permeability and interstitial and pulmonary edema are prominent features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Extrapolating data from other organ systems and animal experiments have suggested that overexpression of VEGF functions primarily as proinjurious molecules in the lung. Recent data, from animal models as well as from patients with ARDS, have shown decreased levels of VEGF in the lung. The role of VEGF and related molecules in ALI/ARDS is, therefore, controversial: what has become clear is that there are many unique features in the regulation of pulmonary vascular permeability and in VEGF expression in the lung. In this review, we explore a growing body of literature looking at the expression and function of VEGF and related molecules in different models of ALI and in patients with ALI/ARDS. Novel evidence points to a potential role of VEGF in promoting repair of the alveolar-capillary membrane during recovery from ALI/ARDS. Understanding the role of VEGF in this disease process is crucial for developing new therapeutic strategies for ALI/ARDS.  相似文献   

20.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号