首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28''s oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.  相似文献   

4.
The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1-17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent).  相似文献   

5.
LncRNA H19 is involved in the development of multiple cancers. Here, we firstly provide new evidence that H19 can induce LIN28B, a conserved RNA binding protein, to accelerate lung cancer growth through sponging miR-196b. Abundance in LIN28B was observed in clinical lung cancer samples. A positive link was observed between H19 and LIN28B in clinical lung cancer samples. In lung cancer cells, H19 was capable of increasing LIN28B expression. Mechanistically, miR-196b directly targeted LIN28B to inhibit LIN28B expression. H19 was capable of promoting LIN28B expression through sequestering miR-196b. Functionally, H19-increased LIN28B conferred the cell proliferation of lung cancer. Our finding indicates that H19 depresses miR-196b to elevate LIN28B, resulting in accelerating cell proliferation in lung cancer.  相似文献   

6.
LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications.  相似文献   

7.
8.
9.
LIN28B is an RNA‐binding protein necessary for maintaining pluripotency in stem cells and plays an important role in trophoblast cell differentiation. LIN28B action on target gene function often involves the Let‐7 miRNA family. Previous work in cancer cells revealed that LIN28 through Let‐7 miRNA regulates expression of androgen receptor (AR). Considering the similarities between cancer and trophoblast cells, we hypothesize that LIN28B also is necessary for the presence of AR in human trophoblast cells. The human first‐trimester trophoblast cell line, ACH‐3P was used to evaluate the regulation of AR by LIN28B, and a LIN28B knockdown cell line was constructed using lentiviral‐based vectors. LIN28B knockdown in ACH‐3P cells resulted in significantly decreased levels of AR and increased levels of Let‐7 miRNAs. Moreover, treatment of ACH‐3P cells with Let‐7c mimic, but not Let‐7e or Let‐7f, resulted in a significant reduction in LIN28B and AR. Finally, forskolin‐induced syncytialization and Let‐7c treatment both resulted in increased expression of syncytiotrophoblast marker ERVW‐1 and a significant decrease in AR in ACH‐3P. These data reveal that LIN28B regulates AR levels in trophoblast cells likely through its inhibitory actions on let‐7c, which may be necessary for trophoblast cell differentiation into the syncytiotrophoblast.  相似文献   

10.
Human LIN28A and LIN28B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ∼3000 mRNAs at ∼9500 sites located in the 3′ UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors.  相似文献   

11.
12.
Matrine, a natural product extracted from the root of Sophora flavescens Ait, was the main chemical ingredient of compounds of Kushen injection, which has been widely used for its remarkable anticancer effects for years. The underlying mechanisms for Matrine regulations of human breast cancer stem cells (BrCSCs) are barely known. LIN28, a well-characterized suppressor of Let-7 microRNA biogenesis, playing vital roles in regulations of stem cells’ renewal and tumorigenesis. Here we show that the compounds of Kushen injection derived Matrine could suppress the BrCSCs differentiation and self-renewal through downregulating the expression of Lin28A, resulting in the inactivation of Wnt pathway through a Let-7b-dependent way. In opposite to Matrine, Cisplatin treatment increases the ability of tumorsphere formation and the expression of BrCSCs markers, which was partially blocked by either Let-7b overexpression or CCND1 inhibition. Furthermore, Matrine sensitized BrCSCs to cisplatin's suppression of cancer expansion in vitro and in vivo. Our study uncovers the role of the LIN28A/Let-7 in BrCSCs renewal, and more importantly, elucidated a novel mechanism by which Matrine induces breast cancer involution.  相似文献   

13.
MiR-146a could stimulate tumor growth or block tumor proliferation in systemic malignancies, referring to the specific downstream targeted gene. However, its roles in breast cancer stem-like cells (BrCSCs) are barely known. To dig out its mechanistic functions, we explored the indicative roles of miR-146 in preclinical study, regardless of the hormone receptor status, and the positive correlation between miR-146 and better prognosis was proved, as its correlation to Let-7c was. To uncover the implicated mechanisms, we first identified the suppressive role of miR-146a in stem cells’ renewal, which was achieved by promoting the asymmetric division of BrCSCs. Let-7c was previously revealed with its suppressive functions in stem-like cells expansion, and miR-146 was predicated and successfully proved to bind to and degrade the 3’UTR of LIN28, a maturation blocker of Let-7 family. Results further showed that miR-146a increased the Let-7c level through degrading LIN28, and LIN28 inhibition is required for miR-146a induction of asymmetric stem cells’ division. Moreover, Let-7 controlled Wnt signaling pathway activity could be strengthened due to the miR146 inhibition of H19, later of which was often activated in stem cells group with functional existence of Wnt signaling. H19 itself in turn formed the positive feedback regulation with Let-7. Our results suggested the miR-146a/LIN28/Wnt signaling circle in restraining the symmetric cells division, which was specifically referred to the controlling of the small circle of Let-7c and H19, and together, this dual axis could help to prohibit the stem cells expansion.  相似文献   

14.
蛋白质泛素化是一种可逆的蛋白质翻译后修饰,在信号转导和蛋白质稳定性调控中发挥关键作用。去泛素化酶调控在许多种肿瘤中的作用机制尚不清楚。本文对63种去泛素化酶在肝细胞癌病人的生存和预后进行分析,发现去泛素化酶JOSD2(josephin domain containing 2)在肝细胞癌组织中表达显著高于癌旁(P<0.0001),且与总生存期相关(P<0.05)。JOSD2属于去泛素化酶MJD(machado josephin domain)亚家族成员,该家族其它成员与肝细胞癌发生无显著的相关性。对TCGA(The Cancer Genome Atlas)数据中JOSD2高表达样本和低表达样本的差异基因进行功能富集分析,显示JOSD2高表达样本中与细胞增殖相关通路显著富集(FDR<0.05)。在肝癌细胞系中过表达JOSD2,发现其能促进肝癌细胞的存活、迁移和侵袭(P<0.01)。综上所述,本文发现去泛素化酶JOSD2在肝细胞癌组织中高表达,高表达JOSD2的肝细胞癌病人总生存期显著降低(P=0.041),过表达JOSD2能促进肝癌细胞的存活和转移,提示JOSD2可能促进肝细胞癌的转移。  相似文献   

15.
Several recent studies have provided evidence that LIN28, a cytoplasmic RNA-binding protein, inhibits the biogenesis of members of the let-7 microRNA family at the Dicer step in both mammals and Caenorhabditis elegans. However, the precise mechanism of inhibition is still poorly understood. Here we report on an in vitro study, which combined RNase footprinting, gel shift binding assays, and processing assays, to investigate the molecular basis and function of the interaction between the native let-7g precursor (pre-let-7g) and LIN28. We have mapped the structure of pre-let-7g and identified some regions of the terminal loop of pre-let-7g that physically interact with LIN28. We have also identified a conformational change upon LIN28 binding that results in the unwinding of an otherwise double-stranded region at the Dicer processing site of pre-let-7g. Furthermore, we showed that a mutant pre-let-7g that displays an open upper stem inhibited pre-let-7g Dicer processing to the same extent as LIN28. The data support a mechanism by which LIN28 can directly inhibit let-7g biogenesis at the Dicer processing step.  相似文献   

16.
17.
18.
Parasite infections in humans have long been associated with specific types of cancers. Schistosoma hematobium is a known inducer of urinary bladder cancer, Helicobacter pylori is a gastric carcinogen, and hepatitis B virus and Opisthorchis viverrini are causative agents of liver cell cancers. Another liver fluke, Fasciola hepatica, has also been identified as a neoplastic risk agent, primarily in animals. We used F. hepatica as a model agent to determine if the presence of an aggressive liver fluke could induce mutagenic events in mammalian tissue. Using the Big Blue® transgenic mouse assay, we found a two-fold increase in lacI mutations in cells harvested from mice harboring F. hepatica worms when compared to uninfected control animals. These data indicate that biological infections can cause increased genetic damage in surrounding host tissue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号