首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between bloodvessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells(mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.  相似文献   

2.
3.
4.
5.
6.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19–9 (CA 19–9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.  相似文献   

7.
8.
9.
10.
11.
Epigenetics refers to a set of regulatory mechanisms that affect gene expression, while the original sequence of the DNA remains unchanged. Because the advance of noncoding RNAs (ncRNAs), the role of microRNAs (miRNAs) has been gradually highlighted in the regulation of numerous cellular processes. A bulk of studies has identified that ncRNAs might be divided into several subtypes. On the one hand, investigations have disclosed the role of these molecules in normal physiological conditions of the cells. On the other hand, there is sufficient evidence that ncRNAs participate in the pathogenesis of diseases. Through this review article, we attempted to gain a comprehensive understanding of the role of ncRNAs, long ncRNAs, miRNAs, and other subtypes in pathogenesis, diagnosis, and treatment of rheumatoid arthritis (RA). Research demonstrated aberrant expression of several miRNAs in various cell and tissue types of patients with RA in comparison to the healthy individuals as well as in animal studies. Furthermore, plausible molecular mechanisms of alterations in ncRNAs expression has been discussed in causing the disease state. These alterations seem promising to be used as biomarkers in RA diagnosis. Alternately, they might be targeted by drugs to interrupt inflammation and other disease complications to treat patients with RA.  相似文献   

12.
13.
Summary The maintainance of resorptive capability towards vital or devitalized bone in osteoclasts isolated from the medullary bone of laying hens and cultured for five days in vitro has been investigated morphologically with the aid of light and transmission electron microscopy. Devitalized bone particles ranging in size from 50 to 100 m, added to cultures of osteoclasts, were rapidly surrounded by the osteoclasts which, in transmission electron microscopy, showed ruffled borders and clear zones at the surfaces of contact with bone — features typical of resorptive activity. Alternatively osteoclasts were added onto the endosteal surfaces of vital or devitalized diaphyses of quail femurs after removal of the endosteal and periosteal cell layers. The results indicated that, when the vital or devitalized bone surfaces were devoid of cells, the osteoclasts adhered and resorbed bone (as confirmed by transmission electron microscopy). When vital bone of quail was cultured for 24 h before the addition of osteoclasts a new cell layer was formed; it enveloped all bone surfaces and precluded the access of osteoclasts to bone. The role of these lining cells, ultrastructurally indistinguishable from resting osteoblasts, is discussed.  相似文献   

14.
Orai and Stim proteins are the mediators of calcium release-activated calcium signaling and are important in the regulation of bone homeostasis and disease. This includes separate regulatory systems controlling mesenchymal stem cell differentiation to form osteoblasts, which make bone, and differentiation and regulation of osteoclasts, which resorb bone. These systems will be described separately, and their integration and relation to other systems, including Orai and Stim in teeth, will be briefly discussed at the end of this review.  相似文献   

15.
The regulatory role of histone modifications with respect to the structure and function of chromatin is well known. Proteins and protein complexes establishing, erasing and binding these marks have been extensively studied. RNAs have only recently entered the picture of epigenetic regulation with the discovery of a vast number of long non-coding RNAs. Fast growing evidence suggests that such RNAs influence all aspects of histone modification biology. Here, we focus exclusively on the emerging functional interplay between RNAs and proteins that bind histone modifications. We discuss recent findings of reciprocally positive and negative regulations as well as summarize the current insights into the molecular mechanism directing these interactions. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

16.
Despite the administration of new effective drugs in recent years, relapse and drug resistance are still the main obstacles in multiple myeloma (MM) treatment, making MM an incurable disease. To overcome drug resistance in MM, it is critical to understand the underlying mechanisms of malfunctioning gene expression and develop novel targeted therapies. During the past few decades, with the discovery and characterization of noncoding RNAs (ncRNAs), the landscape of dysregulated ncRNAs of cancers as well as their biological and pathobiological functions in tumorigenesis and drug resistance have been recognized. Studies about ncRNAs improved the understanding of variations of drug response among individuals at a level distinguished from genetic polymorphism, and provided with new orientations for targeted therapies. In this review, we will summarize the emerging impact and underlying molecular mechanisms of the most relevant classes of ncRNAs in drug resistance of MM, and discuss the potential as well as strategies of treating ncRNAs as therapeutic targets.  相似文献   

17.
RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the ‘karyotype to hub’ hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号