首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.  相似文献   

2.
3.
4.
Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to “cure” ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100–150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.  相似文献   

5.
Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell‐cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules.
  相似文献   

6.
Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood–brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.  相似文献   

7.
《Reproductive biology》2020,20(4):447-459
Stem cell therapy and exosome therapy are the two experimental methods that are now at the center of attention. Various types of stem cells, especially mesenchymal stem cells and spermatogonial stem cells have been widely administrated in reproductive medicine. However, due to the limitation of injecting living cells, using their paracrine secretions such as exosomes seems to be a better option. Exosomes show regenerative, pro-angiogenic, anti-apoptotic, anti-inflammatory, anti-hypoxic, and anti-fibrotic characteristics. They can induce cell proliferation, cell viability, migration, oogenesis, spermatogenesis, capacitation, acrosome reaction, and embryonic implantation. Exosomes have shown promising results in regenerative medicine such as liver fibrosis, stroke, cardiac ischemia, and skin injuries. Exosomes have been used to treat reproductive diseases such as erectile dysfunction and primary ovarian insufficiency. However, the study of exosomes in reproductive medicine is limited. In this article, we are going to review some of the researches on the use of stem cells and exosomes in reproductive medicine and suggest administration of a combination of exosomes for alleviating the symptoms of endometriosis and asthenozoospermia based on previous studies.  相似文献   

8.
Non‐coding RNAs (ncRNAs), such as miRNAs and long non‐coding RNAs (lncRNAs) have been reported as regulators of cardiovascular pathophysiology. Their transient effect and diversified mechanisms of action offer a plethora of therapeutic opportunities for cardiovascular diseases (CVDs). However, physicochemical RNA features such as charge, stability, and structural organization hinder efficient on-target cellular delivery. Here, we highlight recent preclinical advances in ncRNA delivery for the cardiovascular system using non‐viral approaches. We identify the unmet needs and advance possible solutions towards clinical translation. Finding the optimal delivery vehicle and administration route is vital to improve therapeutic efficacy and safety; however, given the different types of ncRNAs, this may ultimately not be frameable within a one-size-fits-all approach.  相似文献   

9.
小RNA,包括小干扰RNA以及微小RNA,已成为多种疾病的潜在治疗药物。目前,小RNA的运输载体主要是病毒或者合成试剂。然而这类载体往往毒性高且特异性低。外泌体是由内源细胞分泌出来的天然纳米材料,本身能够穿越生物膜并在细胞间传递小RNA。以外泌体为基础的小RNA递送作为一种新的转运方式,能够克服低效率,低特异性以及免疫反应等缺陷,有望成为新型载体。本文简要论述了以外泌体为载体的小RNA递送系统在临床治疗研究中的前沿进展。  相似文献   

10.
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.  相似文献   

11.
Acute myocardial infarction (AMI) is one of the most common cardiovascular diseases that leads to high mortality and morbidity globally. Various therapeutic targets for AMI have been investigated in recent years, including the non‐coding RNAs (ncRNAs). NcRNAs, a class of RNA molecules that typically do not code proteins, are divided into several subgroups. Among them, microRNAs (miRNAs) are widely studied for their modulation of several pathological aspects of AMI, including cardiomyocyte apoptosis, inflammation, angiogenesis and fibrosis. It has emerged that long ncRNAs (lncRNAs) and circular RNAs (circRNAs) also regulate these processes via interesting mechanisms. However, the regulatory functions of ncRNAs in AMI and their underlying functional mechanisms have not been systematically described. In this review, we summarize the recent findings involving ncRNA actions in AMI and briefly describe the novel mechanisms of these ncRNAs, highlighting their potential application as therapeutic targets in AMI.  相似文献   

12.
Extracellular vesicles (EVs), mainly exosomes and microvesicles, are bilayer lipids containing biologically active information, including nucleic acids and proteins. They are involved in cell communication and signalling, mediating many biological functions including cell growth, migration and proliferation. Recently, EVs have received great attention in the field of tissue engineering and regenerative medicine. Many in vivo and in vitro studies have attempted to evaluate the chondrogenesis potential of these microstructures and their roles in cartilage regeneration. EVs derived from mesenchymal stem cells (MSCs) or chondrocytes have been found to induce chondrocyte proliferation and chondrogenic differentiation of stem cells in vitro. Preclinical studies have shown that exosomes derived from MSCs have promising results in cartilage repair and in cell-free therapy of osteoarthritis. This review will focus on the in vitro and in vivo chondrogenesis and cartilage regeneration of EVs as well as their potential in the treatment of osteoarthritis.  相似文献   

13.
近年来,越来越多的研究表明,RNA结合蛋白(RNA binding protein,RBP)与多种类型的非编码RNAs(noncoding RNA,ncRNAs)具有互相调节的关系,且调节机制形式多样。一方面,RBP可以调节ncRNA的生物合成、稳定性和功能;另一方面,ncRNA也可以影响RBP的功能和结构。同时,RBP和ncRNA的相互作用还在其他靶基因的调节上起着重要的作用,从而参与众多的生物过程,如组织发育、代谢性疾病、神经退行性疾病、抗病毒免疫和各种癌症等。该文就RBP与常见类型的ncRNAs,包括miRNA、lncRNA、circRNA的相互作用方式和调节机制的研究进展作一综述。  相似文献   

14.
Ageing induces a great risk factor that participates in progressing various degenerative diseases morbidities. The main characteristic of ageing is the failure in maintaining homeostasis in the organs with a cellular senescence. Senescence is characterized by reduced cell growth, evade cellular death, and acquiring a senescence‐associated secretory phenotype (SASP). Mesenchymal stem cells (MSCs) are advantageous cells in regenerative medicine, exerting pleiotropic functions by producing soluble factors, such as exosomes. MSCs and their exosomes (MSCs‐Exo) kinetic are affected by ageing and other aged exosomes. Exosomes biogenesis from aged MSCs is accelerated and their exosomal cargoes, such as miRNAs, vary as compared to those of normal cells. Besides, exosomes from aged MSCs loss their regenerative potential and may negatively influence the function of recipient cells. MSCs‐Exo can improve ageing and age‐related diseases; however, the detailed mechanisms remain yet elusive. Although exosomes‐therapy may serve as a new approach to combat ageing, the translation of preclinical results to clinic needs more extensive investigation on exosomes both on their biology and related techniques. Overall, scrutiny on the effect of ageing on MSCs and vice versa is vital for designing novel therapy using MSCs with focus on the management of older individuals.  相似文献   

15.
Non-coding RNAs as theranostics in human cancers   总被引:1,自引:0,他引:1  
Theranostics was coined originally as a term used to describe a system that combines diagnosis and therapy, aiming to provide the tools for personalized medicine. This review reasserts the grounds for regarding non-coding RNAs (ncRNA) as theranostics in human cancers. The microRNAs (miRNAs) are the most well studied ncRNAs in recent years; their pivotal role in orchestrating tumor initiation and progression has been confirmed in all types of cancers. Hence, these small ncRNAs have emerged as attractive therapeutic targets and diagnostic tool. Various approaches to use their therapeutic potential have been taken, here we summarize the most important ones. In the near future, the focus of theranostics will be shifted towards longer and mechanistically more versatile ncRNAs, and we included some recent advances supporting this view.  相似文献   

16.
外泌体是直径在30-100 nm左右的囊泡结构。作为一种活细胞分泌的亚细胞成分,外泌体广泛参与细胞之间的交流,并可以作为干细胞的旁分泌因子来发挥生物学效应。研究发现外泌体可以参与皮肤组织修复与再生的各个过程,通过促进皮肤细胞的增殖迁移,促进血管新生,调节免疫反应来促进创伤愈合与皮肤组织再生,为进一步实现无细胞治疗提供了新的实现途径。对于某些慢性创面,例如糖尿病性皮肤溃疡等也有较好的治疗效果。本文就外泌体在皮肤修复与再生中作用的研究进展做一综述。  相似文献   

17.
18.
Exosomes are membranous vesicles containing various biomolecules, including non-coding RNAs (ncRNAs). ncRNAs are secreted from several cell types and are involved in various biological functions, including cellular communication. The aim of this study was to identify and illustrate the significance of the osteoarthritis (OA)-specific packaging of exosomal ncRNAs. In this study, we hypothesized that selective packaging of ncRNAs into exosomes would reflect the cellular response to chondrocyte death during OA pathogenesis. Exosomal HULC level significantly decreased in OA exosomes, whereas exosomal miR-372-3p level significantly increased in OA exosomes. In addition, chondrocytes with high HULC levels in the cytosol showed lower overall proliferation and higher apoptotic cell death than normal chondrocytes, whereas chondrocytes with high miR-372-3p in the cytosol showed higher overall proliferation and lower cell death than OA chondrocytes. Among the signaling molecules known to be involved in OA pathogenesis, GSK is one of the regulators of the selective exosomal packaging observed in OA chondrocytes. Inhibition of GSK observed in OA chondrocytes was responsible for enriched uploading of miR-372-3p and suppressed uploading of HULC during OA pathogenesis. In conclusion, we show that selective ncRNAs observed in OA play a critical role in chondrocyte proliferation/apoptosis.  相似文献   

19.
20.
Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. In this review, we discuss the emergence of many novel, diverse and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses and aging, and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases, as well as those that manifest throughout the lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号