共查询到20条相似文献,搜索用时 0 毫秒
1.
Feng Lin Thomas E Ichim Sandeep Pingle Lawrence D Jones Santosh Kesari Shashaanka Ashili 《World journal of stem cells》2020,12(10):1067-1079
Coronavirus disease 2019(COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-Co V2), is growing at an exponential rate worldwide. Manifestations of this disease are heterogeneous; however, advanced cases often exhibit various acute respiratory distress syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and organ involvements. A common theme in advanced COVID-19 is unrestrained immune activation, classically referred to as a \"cytokine storm\", as well as deficiencies in immune regulatory mechanisms such as T regulatory cells. While mesenchymal stem cells(MSCs) themselves are objects of cytokine regulation, they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells, macrophages and neutrophils; and by reducing the activation of T and B cells, dendritic and nature killer cells. Consequently, they have therapeutic potential for treating severe cases of COVID-19. Here we discuss the unique ability of MSCs, to act as a \"living antiinflammatory\", which can \"rebalance\" the cytokine/immune responses to restore equilibrium. We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome. 相似文献
2.
Xiang-Yi Hou La-Mu Danzeng Yi-Lin Wu Qian-Hui Ma Zheng Yu Mei-Ying Li Li-Sha Li 《World journal of stem cells》2024,16(4):353-374
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune res ponse. Therefore, suppressing the overactive immune response may be an effec tive strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and po tential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19. 相似文献
3.
Ejlal Abu-El-Rub Ramada R Khasawneh Fatimah Almahasneh Zaid Altaany Nesreen Bataineh Hana Zegallai Saravanan Sekaran 《World journal of stem cells》2021,13(9):1318-1337
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) pandemic has exhausted the health systems in many countries with thousands cases diagnosed daily. The currently used treatment guideline is to manage the common symptoms like fever and cough, but doesn’t target the virus itself or halts serious complications arising from this viral infection. Currently, SARS-CoV-2 exhibits many genetic modulations which have been associated with the appearance of highly contagious strains. The number of critical cases of COVID-19 increases markedly, and many of the infected people die as a result of respiratory failure and multiple organ dysfun ction. The regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied and confirmed. The impressive immunomodulation and anti-inflammatory activity of MSCs have been recognized as a golden opportunity for the treatment of COVID-19 and its associated complications. Moreover, MSCs regenerative and repairing abilities have been corroborated by many studies with positive outcomes and high recovery rates. Based on that, MSCs infusion could be an effective mechanism in managing and stemming the serious complications and multiple organ failure associated with COVID-19. In the present review, we discuss the commonly reported complications of COVID-19 viral infection and the established and anticipated role of MSCs in managing these complications. 相似文献
4.
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the thera peutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute res piratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the pro spects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases. 相似文献
5.
Considering the high impact that severe Coronavirus disease 2019 (COVID-19) cases still pose on public health and their complex pharmacological management, the search for new therapeutic alternatives is essential. Mesenchymal stromal cells (MSCs) could be promising candidates as they present important immunomodulatory and anti-inflammatory properties that can combat the acute severe respiratory distress syndrome (ARDS) and the cytokine storm occurring in COVID-19, two processes that are mainly driven by an immunological misbalance. In this review, we provide a comprehensive overview of the intricate inflammatory process derived from the immune dysregulation that occurs in COVID-19, discussing the potential that the cytokines and growth factors that constitute the MSC-derived secretome present to treat the disease. Moreover, we revise the latest clinical progress made in the field, discussing the most important findings of the clinical trials conducted to date, which follow 2 different approaches: MSC-based cell therapy or the administration of the secretome by itself, as a cell-free therapy. 相似文献
6.
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs. 相似文献
7.
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, antiapoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS. 相似文献
8.
Tian-Yu Liang Li-Hai Lu Si-Yu Tang Zi-Hao Zheng Kai Shi Jing-Quan Liu 《World journal of stem cells》2023,15(4):150-164
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar–capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesen chymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs. 相似文献
9.
Qi-Hong Chen Ying Zhang Xue Gu Peng-Lei Yang Jun Yuan Li-Na Yu Jian-Mei Chen 《World journal of stem cells》2024,16(8):811-823
10.
COVID-19 is a viral infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that killed a large number of patients around the world. A hyperinflammatory state resulting in a cytokine storm and adult respiratory distress syndrome seems to be the major cause of the death. Many mechanisms have been suggested in the pathogenesis of COVID-19 associated cytokine storm (COVID-CS). Insufficient viral clearance and persistence of a strong cytokine response despite inadequate antiviral immunity seem to be the main mechanisms underlying the pathogenesis. The diagnosis of COVID-19 is based on relatively constant clinical symptoms, clinical findings, laboratory tests, and imaging techniques, while the diagnosis of COVID-CS is a rather dynamic process, based on evolving or newly emerging findings during the clinical course. Management of COVID-19 consists of using antiviral agents to inhibit SARS-CoV-2 replication and treating potential complications including the cytokine storm together with general supportive measures. COVID-CS may be treated using appropriate immunosuppressive and immunomodulatory drugs that reduce the level of inappropriate systemic inflammation, which has the potential to cause organ damage. Currently corticosteroids, IL-6 blockers, or IL-1 blockers are most widely used for treating COVID-CS. 相似文献
11.
Aleksandra Klimczak 《World journal of stem cells》2020,12(9):1013-1022
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties. 相似文献
12.
Miyuki Kamimoto Kunio Matsumoto Toshikazu Nakamura 《Biochemical and biophysical research communications》2009,380(2):333-923
Acute renal failure (ARF) and acute respiratory distress syndrome (ARDS) are still lethal diseases during sepsis, whereas heme oxygenase-1 (HO-1) elicits a host defense response to sepsis. Herein, we provide evidence that hepatocyte growth factor (HGF) prevents ARF and ARDS via enhanced induction of HO-1. Lipopolysaccharide (LPS)-treated mice manifested renal and pulmonary injuries similar to those observed in septic patients, while HGF enhanced the HO-1 induction in renal tubular cells and in lung macrophages. As a result, onsets of ARF and ARDS were blocked by HGF in septic mice. Notably, an HO-1 inhibitor (SnPP) diminished the protective effects of HGF on LPS-induced organ injuries. Furthermore, the inhibitory effect of HGF on up-regulation of interleukin-1β and interleukin-18 was largely restored by SnPP. This is the first report showing that “growth factor therapy” successfully inhibits both ARDS and ARF during endotoxemia, partially via HO-1-dependent suppression of hyper-cytokinemia. 相似文献
13.
新型冠状病毒肺炎(COVID-19)由新型冠状病毒(SARS-CoV-2)导致,可发生严重肺部损伤甚至死亡,目前为止仍在全球范围内广泛蔓延。SARS-CoV-2感染依赖于血管紧张素转换酶2(ACE2)和Ⅱ型跨膜丝氨酸蛋白酶,可导致机体免疫紊乱,促发炎症风暴从而损伤靶器官。COVID-19目前尚无特效药物,间充质干细胞(MSCs)具有组织修复和免疫调节等功能,而且在流感病毒相关性肺炎及其他肺疾病中有一定疗效,因此可能是治疗COVID-19潜在有效药物。目前部分研究也显示出积极的治疗效果,而具体的疗效仍需进一步的临床研究来验证。 相似文献
14.
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients. 相似文献
15.
《Microbes and infection / Institut Pasteur》2020,22(9):500-503
COVID-19 patients (n = 34) suffering from ARDS were treated with tocilizumab (TCZ). Outcome was classified in two groups: “Death” and “Recovery”. Predictive factors of mortality were studied. Mean age was 75.3, mean oxygen (O2) requirements 10.4 l/min. At baseline, all patients had multiple biological abnormalities (lymphopenia, increased CRP, ferritin, fibrinogen, D-dimer and liver enzymes). 24 patients (70.5%) recovered after TCZ therapy and 10 died (29.5%). Deceased subjects differed from patients in whom treatment was effective with regard to more pronounced lymphopenia (0.6 vs 1.0 G/l; p = 0.037), lower platelet number (156 vs 314 G/l; p = 0.0001), lower fibrinogen serum level (0.6 vs 1.0 G/l; p = 0.03), higher aspartate-amino-transferase (108 vs 57 UI/l; p = 0.05) and greater O2 requirements (11 vs 8 l/min; p = 0.003). 相似文献
16.
Panagiotis Mallis Efstathios Michalopoulos Theofanis Chatzistamatiou Catherine Stavropoulos-Giokas 《World journal of stem cells》2020,12(8):731-751
Severe acute respiratory syndrome coronavirus-2 and the related coronavirus disease-19 (COVID-19) is a worldwide emerging situation, which was initially reported in December 2019 in Wuhan, China. Currently, more than 7258842 new cases, and more than 411879 deaths have been reported globally. This new highly transmitted coronavirus is responsible for the development of severe acute respiratory distress syndrome. Due to this disorder, a great number of patients are hospitalized in the intensive care unit followed by connection to extracorporeal membrane oxygenation for breath supporting and survival. Severe acute respiratory distress syndrome is mostly accompanied by the secretion of proinflammatory cytokines, including interleukin (IL)-2, IL-6, IL-7, granulocyte colony-stimulating factor (GSCF), interferon-inducible protein 10 (IP10), monocyte chemotactic protein-1 (MCP1), macrophage inflammatory protein 1A (MIP1A), and tumor necrosis factor alpha (TNF-α), an event which is known as “cytokine storm”. Further disease pathology involves a generalized modulation of immune responses, leading to fatal multiorgan failure. Currently, no specific treatment or vaccination against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been developed. Mesenchymal stromal cells (MSCs), which are known for their immunosuppressive actions, could be applied as an alternative co-therapy in critically-ill COVID-19 patients. Specifically, MSCs can regulate the immune responses through the conversion of Th1 to Th2, activation of M2 macrophages, and modulation of dendritic cells maturation. These key immunoregulatory properties of MSCs may be exerted either by produced soluble factors or by cell-cell contact interactions. To date, several clinical trials have been registered to assess the safety, efficacy, and therapeutic potential of MSCs in COVID-19. Moreover, MSC treatment may be effective for the reversion of ground-glass opacity of damaged lungs and reduce the tissue fibrosis. Taking into account the multifunctional properties of MSCs, the proposed stem-cell-based therapy may be proven significantly effective in critically-ill COVID-19 patients. The current therapeutic strategy may improve the patient’s overall condition and in parallel may decrease the mortality rate of the current disease. 相似文献
17.
D. A. B. Rex Shobha Dagamajalu Richard K. Kandasamy Rajesh Raju T. S. Keshava Prasad 《Journal of cell communication and signaling》2021,15(4):601
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been declared a pandemic by WHO. The clinical manifestation and disease progression in COVID-19 patients varies from minimal symptoms to severe respiratory issues with multiple organ failure. Understanding the mechanism of SARS-CoV-2 interaction with host cells will provide key insights into the effective molecular targets for the development of novel therapeutics. Recent studies have identified virus-mediated phosphorylation or activation of some major signaling pathways, such as ERK1/2, JNK, p38, PI3K/AKT and NF-κB signaling, that potentially elicit the cytokine storm that serves as a major cause of tissue injuries. Several studies highlight the aggressive inflammatory response particularly ‘cytokine storm’ in SARS-CoV-2 patients. A depiction of host molecular dynamics triggered by SARS-CoV-2 in the form of a network of signaling molecules will be helpful for COVID-19 research. Therefore, we developed the signaling pathway map of SARS-CoV-2 infection using data mined from the recently published literature. This integrated signaling pathway map of SARS-CoV-2 consists of 326 proteins and 73 reactions. These include information pertaining to 1,629 molecular association events, 30 enzyme catalysis events, 43 activation/inhibition events, and 8,531 gene regulation events. The pathway map is publicly available through WikiPathways: https://www.wikipathways.org/index.php/Pathway:WP5115.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00632-4. 相似文献
18.
目的:观察乌司他丁(UTI)对急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)的临床应用。方法:选择我院ICU自2008年1月至2011年1月收治的160例ARDS患者作为研究对象,采用随机对照的方法,并且经患者或患者家属知情并签字同意分组。分为UTI组(A组)和对照组(B组)。两组均给予相同综合治疗措施,A组除综合治疗外还给予注射用乌司他丁,每次30万U,每日2次。分别记录两组患者开始治疗、治疗后第3天、治疗第7天的生命体征,动脉血气分析、血生化检查结果、并且记录患者在ICU治疗的转归,应用SPSS13.0软件对结果进行统计学分析。结果:经治疗3天A组呼吸频率低于B组,动脉血气分析提示两组PO2、PO2/FiO2、SaO2均有上升。比较后发现A组PO2、PO2/FiO2、SaO2高于B组(P<0.05),两组PO2、SaO2比较有统计学差异。经治疗3天A组与B组生化指标比较、白细胞计数、肾功及血乳酸均有下降,有统计学差异,P<0.05。全部治疗结束后A组与B组死亡率比较(UTI组34.29%,对照组38.26%,P=0.0097)及机械通气时间比较(UTI组7.54±3.27天,对照组11.78±2.69天,P=0.0086),均有统计学差异。结论:大剂量UTI用于ARDS的临床治疗可有效改善患者氧合指数,减少机械通气时间,降低患者的病死率。 相似文献
19.
针对新型冠状病毒肆虐以及暂无特效药物治疗的情况,多地已开展间充质干细胞(MSCs)在新型冠状病毒感染重症救治方面的临床研究,在规范应用的前提下,经过严格的临床检验后,对若干重型患者进行治疗并取得了一定效果。MSCs能抑制免疫系统过度激活,通过改善微环境促进内源性修复、抑制肺部炎症的进展达到缓解呼吸窘迫症状的目的。本文就新型冠状病毒免疫损伤的发生机制、治疗现状以及MSCs在治疗新型冠状病毒感染的潜在治疗机制作一介绍。 相似文献