首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.  相似文献   

2.
Mesenchymal stem cells targeting the GVHD   总被引:1,自引:1,他引:0  
Acute graft-versus-host disease(GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues.About 35%—50% of hematopoietic stem cell transplant(HSCT) recipients will develop acute GVHD.It is associated with considerable morbidity and mortality,particularly in patients who do not respond to primary therapy,which usually consists of glucocorticoids(steroids).Most of the available second-line and third-line treatments for steroid-refractory acut...  相似文献   

3.
Allogeneic haematopoietic stem cell transplantation (allo‐HSCT) is the only curative method in treating haematologic malignant diseases. Graft‐versus‐host disease (GVHD) is a common complication post–allo‐HSCT, which can be life‐threatening. Mesenchymal stem cells (MSCs) as an adult stem cell with immunoregulatory function have demonstrated efficacy in steroid resistant acute GVHD (aGVHD). However, the outcome of aGVHD treated with MSCs in clinical trials varied and its underlying mechanism is still unclear. TGF‐β1 is a potent cytokine, which plays a key role in immunoregulation. In the present study, we firstly transduced the lentivirus vector containing TGF‐β1 gene with mouse bone marrow‐derived MSCs. Then, we investigated the immunosuppressive effect of TGF‐β1 gene‐modified MSCs on lymphocytes in vitro and its preventive and therapeutical effects on murine aGVHD model in vivo. Murine MSC was successfully isolated and identified. TGF‐β1 was efficiently transduced into mouse MSCs, and high level TGF‐β1 was detected. MSC‐TGF‐β1 shared the same morphology and immunotypic features of normal MSC. In vitro, MSC‐TGF‐β1 showed enhanced immunosuppressive function on lymphocyte proliferation. In vivo, MSC‐TGF‐β1 showed enhanced amelioration on the severity of aGVHD both in prophylactic and therapeutic murine models. Finally, the macrophages (MØs) derived from MSC‐TGF‐β1–treated mice showed a remarkably increasing of anti‐inflammatory M2‐like phenotype. Furthermore, the differentiation of CD4+ CD25+ Foxp3+ Treg cells was significantly increased in MSC‐TGF‐β1–treated group. Taken together, we proved that MSC‐TGF‐β1 showed enhanced alleviation of aGVHD severity in mice by skewing macrophages into a M2 like phenotype or increasing the proportion of Treg cells, which opens a new frontier in the treatment of aGVHD.  相似文献   

4.
炎症性肠病(IBD)是一种慢性非特异性肠道炎性疾病,其病因未明,有终生复发倾向,重症者迁延不愈。早期治疗以药物为主,部分重症患者后期需要手术干预。近年来,间充质干细胞(MSCs)由于具有多向分化潜能、免疫调节及组织修复功能已被广泛应用于IBD治疗的临床前基础研究中,具有一定理论基础。在已开展的MSCs治疗IBD的临床试验中,尚未有严重并发症的报道。虽然目前MSCs治疗不是IBD的标准治疗方案,但今后可能会成为一种新的治疗选择,特别是对于难治性或合并肛瘘的IBD患者。本文就MSCs的概况及其在IBD治疗的作用机制和应用前景作一综述。  相似文献   

5.
Mesenchymal stromal/stem cells (MSCs) are currently applied in regenerative medicine and tissue engineering. Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients. MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices. Usually, clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders. Currently, cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries. Meanwhile, this has led to questions regarding the availability, stability, consistency, multipotency, and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after long-term cryostorage. This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation. This article mainly describes what is known about banking perinatal MSCs in China and, importantly, it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life. This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine, albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.  相似文献   

6.
李夏  滑慧娟  郝捷  王柳  刘忠华 《遗传》2018,40(12):1120-1128
随着干细胞研究的不断深入,干细胞功能分化研究和临床应用转化的需求日益提升。人脐带间充质干细胞(human umbilical cord mesenchymal stem cells, hUCMSCs)来源广泛,不仅自我更新能力强、能够分化成多种类型的成体细胞,而且其自身具有免疫调节能力,不易引发免疫排斥反应,在干细胞功能分化研究和临床应用中具有巨大应用前景和应用潜力。目前,传统的细胞培养方式培养效率低、细胞活性较差,不能满足日益增长的研究和应用需求。本研究利用微载体结合旋转瓶的悬浮培养方法,通过优化细胞接种量及转速等影响因素,快速获得大量高质量的人脐带间充质干细胞。经悬浮培养总细胞量可高达到7×10 8个细胞/L,而且细胞活性较高,MSC 特异性标记物表达良好,在恢复平面培养后仍能维持MSC的正常细胞形态和增殖能力。高效脐带间充质干细胞悬浮培养体系的初步建立,为未来的干细胞功能分化研究和临床应用奠定了基础。  相似文献   

7.
Progenitor stem cells have been identified, isolated and characterized in numerous tissues and organs. However, their therapeutic potential and the use of these stem cells remain elusive except for a few progenitor cells from bone marrow, umbilical cord blood, eyes and dental pulp. The use of bone marrow-derived hematopoietic stem cells (HSC) or mesenchymal stem cells (MSCs) is restricted due to their extreme invasive procedures, low differentiation potential with age and rejection. Thus, we need a clinical grade alternative to progenitor stem cells with a high potential to differentiate, na?ve and is relatively easy in in vitro propagation. In this review, we summarize cell populations of adherent and floating spheres derived from different origins of skin, or correctly foreskin, by enzymatic digestion compared with established MSCs. The morphology, phenotype, differentiation capability and immunosuppressive property of the adherent cell populations are comparable with MSCs. Serum-free cultured floating spheres have limited mesodermal but higher neurogenic differentation potential, analogous to neural crest stem cells. Both the populations confirmed their plethora potential in in vitro. Together, it may be noted that the skin-derived adherent cell populations and floating cells can be good alternative sources of progenitor cells especially in cosmetic, plastic and sports regenerative medicine.  相似文献   

8.
当前新型冠状病毒肺炎疾病已在全球大规模蔓延,严重危害人类的健康。新病毒感染性强并且感染后重症患者病死率较高,目前尚无有效的特异性治疗药物,因此亟待寻找安全有效的治疗方法。间充质干细胞(Mesenchymal stem cells,MSCs)具有强大的免疫调节和组织损伤修复与再生的生物学功能,因此作为一种干细胞疗法有潜力降低新冠肺炎重症患者的组织损伤和死亡率。目前,我国和国外多家研究机构已启动多项MSCs治疗新型冠状病毒肺炎的相关临床研究项目,已初步证实该疗法的安全性和有效性,因此具有非常良好的临床治疗前景。  相似文献   

9.
Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells(MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in Ⅰ/Ⅱ phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase Ⅲ-Ⅳ. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases.  相似文献   

10.
MSCs are promising candidates for stem cell therapy and regenerative medicine. Umbilical cord is the easiest obtainable biological source of MSCs and the Wharton's jelly of the umbilical cord is a rich source of fetus-derived stem cells. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion. A fast and efficient protocol for generation of large quantities of MSCs is required to meet the clinical demand and biomedical research needs. Here we have optimized conditions for scaling up of WJ-MSCs. Low seeding density along with basic fibroblast growth factor (bFGF) supplementation in the growth medium, which is DMEM-KO, resulted in propagation of more than 1 x 10(8) cells within a time period of 15 days from a single umbilical cord. The upscaled WJ-MSCs retained their differentiation potential and immunosuppressive capacity. They expressed the typical hMSC surface antigens and the addition of bFGF in the culture medium did not affect the expression levels of HLA-DR and CD 44. A normal karyotype was confirmed in the large-scale expanded WJ-MSCs. Hence, in this study we attempted rapid clinical-scale expansion of WJ-MSCs which would allow these fetus-derived stem cells to be used for various allogeneic cell-based transplantations and tissue engineering.  相似文献   

11.
Cell therapy using MSCs (mesenchymal stem cells) might be effective treatment for refractory GVHD (graft-versus-host disease). However, the fate and distribution of MSCs after transplantation remains unclear. In this study, an animal model was developed to monitor the dynamic distribution of MSCs in mice with GVHD. A GVHD mouse model was established by transplanting C57BL/6 donor bone marrow cells and C57BL/6 EGFP (enhanced green fluorescent protein) splenocytes into lethally irradiated BALB/c nude recipient mice. Donor MSCs were obtained from MHC-identical C57BL/6 RFP (red fluorescent protein) mice and infused into the recipient mice on the same transplantation day. In vivo movement of the donor splenocytes (EGFP) and MSCs (RFP) were evaluated by measuring the biofluorescence (IVIS-Xenogen system). Donor splenocytes and MSCs reached the lungs first, and then the gastrointestinal tract, lymph nodes and skin, in that order; the transit time and localization site of these cells were very similar. In the recipient mouse with GVHD, the number of detectable cells declined with time, as assessed by biofluorescence imaging and confirmed by RT (real-time)-PCR. This bioimaging system might be useful for preclinical testing and the design of therapeutic strategies for monitoring the dynamic distribution of MSCs with GVHD.  相似文献   

12.
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.  相似文献   

13.
Ischemic stroke(IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells(MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of st...  相似文献   

14.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

15.
Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside.  相似文献   

16.
急性放射性损伤是组织损伤的一种重要类型,目前未有较理想的治疗方案。间充质干细胞(MSCs)能够多向分化、自我更新,且具有分泌多种细胞因子、抗炎、免疫调节等生物活性。其在促进组织修复的优势显而易见,而移植的时机、剂量长期以来莫衷一是。致瘤性等安全问题制约其临床研究的进一步开展。近年来,MSCs趋向于无细胞化移植取得了明显成效。这一研究新进展势必迎来急性放射性损伤治疗的新格局,本文对此研究现状及进展进行综述。  相似文献   

17.
Growing cell-based myocardial therapies which could lead to successful myocardial repair attracts medical interest. Even more intriguing is the observation that MSCs appears to be a more potent material among kinds of stem cells for the transplantation, the mechanism for this benefit remains unclear. However, the therapeutic contribution of MSCs to myocardial repair can be caused by multiple factors including: direct differentiation into cardiac tissue including cardiomyocytes, smooth muscle cell, and vascular endothelial cells; secreting a variety of cytokines and growth factors that have paracrine activities; spontaneous cell fusion; and stimulating endogenous repair. In addition, MSCs possess local immunosuppressive properties, and MSCs mobilization is widely used clinically for transplantation. We will discusses the potential mechanisms of MSCs repair for ischemic heart diseases.  相似文献   

18.
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.  相似文献   

19.
Complex circuitry and limited regenerative power make central nervous system(CNS)disorders the most challenging and difficult for functional repair.With elusive disease mechanisms,traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases.However,the number of neurons still diminishes in many patients.Recently,stem cell therapy has been proposed as a viable option.Mesenchymal stem cells(MSCs),a widely-studied human adult stem cell population,have been discovered for more than 20 years.MSCs have been found all over the body and can be conveniently obtained from different accessible tissues:bone marrow,blood,and adipose and dental tissue.MSCs have high proliferative and differentiation abilities,providing an inexhaustible source of neurons and glia for cell replacement therapy.Moreover,MSCs also show neuroprotective effects without any genetic modification or reprogramming.In addition,the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation.These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders.Here,we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases.This review article will focus on multiple sclerosis,spinal cord injury,autism,glaucoma,retinitis pigmentosa and age-related macular degeneration.  相似文献   

20.
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号