首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular ATP is released from activated platelets and endothelial cells and stimulates proliferation of vascular smooth muscle cells (VSMC). We found that ATP stimulates a profound but transient activation of protein kinase A (PKA) via purinergic P2Y receptors. The specific inhibition of PKA by adenovirus-mediated transduction of the PKA inhibitor (PKI) attenuates VSMC proliferation in response to ATP, suggesting a positive role for transient PKA activation in VSMC proliferation. By contrast, isoproterenol and forskolin, which stimulate a more sustained PKA activation, inhibit VSMC growth as expected. On the other hand, the activity of serum response factor (SRF) and the SRF-dependent expression of smooth muscle (SM) genes, such as SM--actin and SM22, are extremely sensitive to regulation by PKA, and even transient PKA activation by ATP is sufficient for their downregulation. Analysis of the dose responses of PKA activation, VSMC proliferation, SRF activity, and SM gene expression to ATP, with or without PKI overexpression, suggests the following model for the phenotypic modulation of VSMC by ATP, in which the transient PKA activation plays a critical role. At low micromolar doses, ATP elicits a negligible effect on DNA synthesis but induces profound SRF activity and SM gene expression, thus promoting the contractile VSMC phenotype. At high micromolar doses, ATP inhibits SRF activity and SM gene expression and promotes VSMC growth in a manner dependent on transient PKA activation. Transformation of VSMC by high doses of ATP can be prevented and even reversed by inhibition of PKA activity. adenosine triphosphate; purinergic receptors; protein kinase A; serum response factor; proliferation; -actin; SM22  相似文献   

2.
Endothelin-1 (ET1) is a vasoactive peptide that stimulates hypertrophy of vascular smooth muscle cells (VSMC) through diverse signaling pathways mediated by G(q)/G(i)/G(13) heterotrimeric G proteins. We have found that ET1 stimulates the activity of cAMP-dependent protein kinase (PKA) in VSMC as profoundly as the G(s)-linked beta-adrenergic agonist, isoproterenol (ISO), but in a transient manner. PKA activation by ET1 was mediated by type-A ET1 receptors (ETA) and recruited an autocrine signaling mechanism distinct from that of ISO, involving G(i)-coupled betagamma subunits of heterotrimeric G proteins, extracellular signal-regulated kinases ERK1/2, cyclooxygenase COX-1 (but not COX-2) and prostacyclin receptors. In the functional studies, inhibition of PKA or COX-1 attenuated ET1-induced VSMC hypertrophy, suggesting the positive role of PKA in this response to ET1. Furthermore, we found that ET1 stimulates a Gbetagamma-mediated, PKA-dependent phosphorylation and inactivation of glycogen synthase kinase-3 (GSK3), an enzyme that regulates cell growth. Together, this study describes that (i) PKA can be transiently activated by G(i)-coupled agonists such as ET1 by an autocrine mechanism involving Gbetagamma/calcium/ERK/COX-1/prostacyclin signaling, and (ii) this PKA activation promotes VSMC hypertrophy, at least in part, through PKA-dependent phosphorylation and inhibition of GSK3.  相似文献   

3.
4.
Protein kinase A (PKA) is an important effector enzyme commonly activated by cAMP. The present study focuses on our finding that the vasoactive peptide endothelin-1 (ET1), whose signaling is not coupled to cAMP production, stimulates PKA in two independent cellular models. Using an in vivo assay for PKA activity, we found that ET1 stimulated PKA in HeLa cells overexpressing ET1 receptors and in aortic smooth muscle cells expressing endogenous levels of ET1 receptors. In these cell models, ET1 did not stimulate cAMP production, indicating a novel mechanism for PKA activation. The ET1-induced activation of PKA was found to be dependent on the degradation of inhibitor of kappaB, which was previously reported to bind and inhibit PKA. ET1 potently stimulated the nuclear factor-kappaB pathway, and this effect was inhibited by overexpression of the inhibitor of kappaB dominant negative mutant (IkappaBalpham) and by treatment with the proteasome inhibitor MG-132. Importantly, IkappaBalpham and MG-132 had similar inhibitory effects on ET1-induced activation of PKA without affecting G(s)-mediated activation of PKA or ET1-induced phosphorylation of mitogen-activated protein kinase. Finally, another vasoactive peptide, angiotensin II, also stimulated PKA in a cAMP-independent manner in aortic smooth muscle cells. These findings suggest that cAMP-independent activation of PKA might be a general response to vasoactive peptides.  相似文献   

5.
Heparin and heparan are potent inhibitors of vascular smooth muscle cell (VSMC) proliferation. To investigate the mechanisms by which heparin suppresses growth factor stimulated mitogenesis, the present experiments investigated the effects of heparin on platelet-derived growth factor (PDGF) stimulated signal transduction pathways. Heparin treatment substantially inhibited PDGF-BB stimulated rat VSMC growth. Western analysis showed a 30 min PDGF-BB treatment of VSMC induced the tyrosine phosphorylation of multiple protein bands; cotreatment with heparin inhibited mitogen-activated protein (MAP) kinase tyrosine phosphorylation but had little effect on PDGF receptor tyrosine phosphorylation. In-gel kinase assays demonstrated that heparin inhibited PDGF-BB stimulated MAP kinase activity at late (25 min) but not early (10 min) time points. These data indicate that heparin does not inhibit the initial signalling events after PDGF-BB binding but instead acts through an alternate mechanism to inhibit MAP kinase. To investigate if heparin directly stimulates tyrosine phosphatase-mediated suppression of MAP kinase, we treated VSMC with orthovanadate, a tyrosine phosphatase inhibitor. Heparin inhibited MAP kinase tyrosine phosphorylation after orthovanadate treatment, indicating that heparin does not suppress MAP kinase by enlistment of a tyrosine phosphatase. Experiments were performed to investigate signalling pathways upstream of MAP kinase. To determine if protein kinase C (PKC) mediates PDGF-BB, serum, and EGF stimulation of MAP kinase, we treated VSMC overnight with phorbol ester (PMA) to downregulate PKC. Abolition of conventional and novel PKC activity significantly suppressed both serum and PDGF-BB induced MAP kinase activation, indicating protein kinase C is an important mediator for these mitogens. In contrast, downregulation of these PKC isoforms had little effect on EGF stimulation of MAP kinase. As heparin inhibits PDGF and serum but not EGF stimulation of MAP kinase, these data precisely correlate heparin inhibition of MAP kinase with activation through PKC-dependent pathways. Immunoprecipitation analysis found that heparin inhibited serum, PMA, and PDGF but not EGF induced raf-1 phosphorylation. These studies demonstrate that heparin did not block PDGF-BB receptor activation, which initiates the mitogenic signalling cascade. Heparin did inhibit specific postreceptor second messenger signals, such as the late phase activation of MAP kinase, which may be mediated by suppression of PKC-dependent pathways. J. Cell. Physiol. 172:69–78, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
In addition to their role in many vital cellular functions, arachidonic acid (AA) and its eicosanoid metabolites are involved in the pathogenesis of several diseases, including atherosclerosis and cancer. To understand the potential mechanisms by which these lipid molecules could influence the disease processes, particularly cardiovascular diseases, we studied AA's effects on vascular smooth muscle cell (VSMC) motility and the role of cAMP-response element binding protein-1 (CREB-1) in this process. AA exerted differential effects on VSMC motility; at lower doses, it stimulated motility, whereas at higher doses, it was inhibitory. AA-induced VSMC motility requires its conversion via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. AA stimulated the phosphorylation of extracellular signal-regulated kinases (ERKs), Jun N-terminal kinases (JNKs), and p38 mitogen-activated protein kinase (p38MAPK) in a time-dependent manner, and blockade of these serine/threonine kinases significantly attenuated AA-induced VSMC motility. In addition, AA stimulated CREB-1 phosphorylation and activity in a manner that was also dependent on its metabolic conversion via the LOX and COX pathways and the activation of ERKs and p38MAPK but not JNKs. Furthermore, suppression of CREB-1 activation inhibited AA-induced VSMC motility. 15(S)-Hydroxyeicosatetraenoic acid and prostaglandin F2alpha, the 15-LOX and COX metabolites of AA, respectively, that are produced by VSMC at lower doses, were also found to stimulate motility in these cells. Together, these results suggest that AA induces VSMC motility by complex mechanisms involving its metabolism via the LOX and COX pathways as well as the ERK- and p38MAPK-dependent and JNK-independent activation of CREB-1.  相似文献   

7.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   

8.
9.
10.
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.  相似文献   

11.
Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade.  相似文献   

12.
The small GTPases Ras or Rap1 were suggested to mediate the stimulatory effect of some G protein-coupled receptors on ERK activity in neuronal cells. Accordingly, we reported here that pituitary adenylate cyclase-activating polypeptide (PACAP), whose G protein-coupled receptor triggers neuronal differentiation of the PC12 cell line via ERK1/2 activation, transiently activated Ras and induced the sustained GTP loading of Rap1. Ras mediated peak stimulation of ERK by PACAP, whereas Rap1 was necessary for the sustained activation phase. However, PACAP-induced GTP-loading of Rap1 was not sufficient to account for ERK activation by PACAP because 1) PACAP-elicited Rap1 GTP-loading depended only on phospholipase C, whereas maximal stimulation of ERK by PACAP also required the activity of protein kinase A (PKA), protein kinase C (PKC), and calcium-dependent signaling; and 2) constitutively active mutants of Rap1, Rap1A-V12, and Rap1B-V12 only minimally stimulated the ERK pathway compared with Ras-V12. The effect of Rap1A-V12 was dramatically potentiated by the concurrent activation of PKC, the cAMP pathway, and Ras, and this potentiation was blocked by dominant-negative mutants of Ras and Raf. Thus, this set of data indicated that GPCR-elicited GTP loading of Rap1 was not sufficient to stimulate efficiently ERK in PC12 cells and required the permissive co-stimulation of PKA, PKC, or Ras.  相似文献   

13.
Neuropeptide Y (NPY), a sympathetic cotransmitter, acts via G protein-coupled receptors to stimulate constriction and vascular smooth muscle cell (VSMC) proliferation through interactions with its Y1 receptors. However, VSMC proliferation appears bimodal, with high- and low-affinity peaks differentially blocked by antagonists of both Y1 and Y5 receptors. Here, we sought to determine the signaling mechanisms of NPY-mediated bimodal mitogenesis. In rat aortic VSMCs, NPY's mitogenic effect at all concentrations was blocked by pertussis toxin and was associated with decreased forskolin-stimulated cAMP levels. NPY also increased intracellular calcium levels; in contrast to mitogenesis, this effect was dose dependent. The rise in intracellular Ca2+ depended on extracellular Ca2+ and was mediated via activation of Y1 receptors, but not Y5 receptors. Despite differences in calcium, the signaling pathways activated at low and high NPY concentrations were similar. The mitogenic effect of the peptide at all doses was completely blocked by inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), protein kinase C (PKC), and mitogen-activated protein kinase kinase, MEK1/2. Thus, in VSMCs, NPY-mediated mitogenesis signals primarily via Y1 receptors activating 2 Ca2+-dependent, growth-promoting pathways -- PKC and CaMKII. At the high-affinity peak, these 2 pathways are amplified by Y5 receptor-mediated, calcium-independent inhibition of the adenylyl cyclase - protein kinase A (PKA) pathway. All 3 mechanisms converge to the extracellular signal-regulated kinases (ERK1/2) signaling cascade and lead to VSMC proliferation.  相似文献   

14.
15.
G protein-coupled receptors (GPCRs) can stimulate the mitogen-activated protein kinase (MAPK) cascade and thereby induce cellular proliferation like receptor tyrosine kinases (RTKs). Work over the past 5 years has established several models which reduce the links of G(i)-, G(q)-, and G(s)-coupled receptors to MAPK on few principle pathways. They include (i) Ras-dependent activation of MAPK via transactivation of RTKs such as the epidermal growth factor receptor (EGFR), (ii) Ras-independent MAPK activation via protein kinase C (PKC) that converges with the RTK signalling at the level of Raf, and (iii) activation as well as inactivation of MAPK via the cAMP/protein kinase A (PKA) pathway in dependency on the type of Raf. Most of these generalizing hypotheses are founded on experimental data obtained from expression studies and using a limited set of individual receptors. This review will compare these models with pathways to MAPK found for a great variety of peptide hormone and neuropeptide receptor subtypes in various cells. It becomes evident that under endogenous conditions, the transactivation pathway is less dominant as postulated, whereas pathways involving isoforms of PKC and, especially, phosphoinositide 3-kinase (PI-3K) appear to play a more important role as assumed so far. Highly cell-specific and unusual connections of signalling proteins towards MAPK, in particular tumour cells, might provide points of attacks for new therapeutic concepts.  相似文献   

16.
17.
18.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

19.
20.
Endothelial nitric-oxide synthase (eNOS) is regulated by signaling pathways involving multiple sites of phosphorylation. The coordinated phosphorylation of eNOS at Ser(1179) and dephosphorylation at Thr(497) activates the enzyme, whereas inhibition results when Thr(497) is phosphorylated and Ser(1179) is dephosphorylated. We have identified two further phosphorylation sites, at Ser(617) and Ser(635), by phosphopeptide mapping and matrix-assisted laser desorption ionization time of flight mass spectrometry. Purified protein kinase A (PKA) phosphorylates both sites in purified eNOS, whereas purified Akt phosphorylates only Ser(617). In bovine aortic endothelial cells, bradykinin (BK), ATP, and vascular endothelial growth factor stimulate phosphorylation of both sites. BK-stimulated phosphorylation of Ser(617) is Ca(2+)-dependent and is partially inhibited by LY294002 and wortmannin, phosphatidylinositol 3-kinase inhibitors, suggesting signaling via Akt. BK-stimulated phosphorylation of Ser(635) is Ca(2+)-independent and is completely abolished by the PKA inhibitor, KT5720, suggesting signaling via PKA. Activation of PKA with isobutylmethylxanthine also causes Ser(635), but not Ser(617), phosphorylation. Mimicking phosphorylation at Ser(635) by Ser to Asp mutation results in a greater than 2-fold increase in activity of the purified protein, whereas mimicking phosphorylation at Ser(617) does not alter maximal activity but significantly increases Ca(2+)-calmodulin sensitivity. These data show that phosphorylation of both Ser(617) and Ser(635) regulates eNOS activity and contributes to the agonist-stimulated eNOS activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号