首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We investigated the intranuclear distribution of PML and Sp100 in HeLa cells at the ultrastructural level and examined their relocalization in response to herpes simplex virus type 1 (HSV-1) infection. In the absence of infection, we observed that both are components, not only of nuclear bodies, but also of interchromatin granule-associated zones, which suggests a potential role for PML and Sp100 in splicing events. Prolonged HSV-1 infection induced dramatic changes in nuclear organization which consisted of the morphological disappearance of some nuclear structures (nuclear bodies, interchromatin granule-associated zones, coiled bodies) and of the development of a centrally located electron-translucent viral region which pushed the cellular clusters of interchromatin granules to the nuclear border. Concomitantly, dense bodies, concentric arrays of reduplicated inner nuclear membrane, and translucent patches containing a few viral capsids occurred at the nuclear border. PML and Sp100 were exclusively detected over the finely granular material of the vital translucent patches which also contains small amounts of p80-coilin and U1 and U2 snRNAs. An antiserum raised against capsid proteins intensely labeled the viral translucent patches at the level of their finely granular material and enclosed viral capsids. Our data, therefore, suggest that these viral structures, in addition to being the site of accumulation of vital capsid proteins and, possibly, a capsid-works, are also a site of sequestration of cell factors including PML and Sp100. Viral capsid proteins could interfere with and inactivate PML and Sp100 and be implicated in the shutoff of host cell metabolism induced by HSV-1 infection.  相似文献   

9.
10.
11.
The dynamic interaction between the androgen receptor (AR) and steroid receptor coactivator-1 (SRC-1) was explored in living cells expressing chimeric forms of the receptor and the coactivator containing two spectral variants of jellyfish fluorescent protein. Laser scanning confocal imaging of transfected cells expressing fluorescently labeled SRC-1 revealed that in an unsynchronized cell population, the coactivator is distributed in approximately 40% cells as nuclear bodies of 0.2-1.0 microm in diameter. Immunostaining of cyan fluorescent protein-labeled SRC-1 (CFP-SRC1)-expressing cells with antibody to promyelocytic leukemia (PML) protein showed significant overlap of the CFP fluorescence with the antibody stain. Cotransfection of cells with a plasmid expressing the CFP conjugate of Sp100 (another marker protein for the PML nuclear body) also showed colocalization of the yellow fluorescent protein (YFP)-SRC1 containing nuclear foci with the PML bodies in living cells. Analysis of the three-dimensional structure revealed that the PML bodies are round to elliptical in shape with multiple satellite bodies on their surface. Some of these satellite bodies contain the SRC-1. Activation and nuclear import of CFP-AR by the agonistic ligand 5alpha-dihydrotestosterone, but not by the antagonist casodex, transferred YFP-SRC1 from the PML bodies to an interlacing filamentous structure. In a single living cell, agonist-activated AR caused a time-dependent movement of YFP-SRC1 from the PML bodies to this filamentous structure. Additionally, coexpression of a constitutively active mutant of AR (AR-deltaligand binding domain) also displaced YFP-SRC1 from the PML bodies to this intranuclear filamentous structure. The fluorescence recovery after photobleaching approach was used to examine changes in the kinetics of movement of YFP-SRC1 during its mobilization from the PML bodies to the intranuclear filamentous structure by the agonist-activated AR. Results of the relative half-times (t(1/2)) of replacement of YFP-SRC1 within the photobleached region of a single PML body from its surrounding nuclear space supported the conclusion that SRC-1 is actively transported from the PML bodies to the intranuclear filamentous structure by the ligand-activated AR. This observation also suggests an interaction between AR and SRC-1 before its binding to the target gene. The PML bodies have been implicated as a cross-road for multiple regulatory pathways that control cell proliferation, cellular senescence, and apoptosis. Our present results along with other recent reports expand the role of this subnuclear structure to include the regulation of steroid hormone action.  相似文献   

12.
The interferon (IFN)-induced promyelocytic leukemia (PML) protein is specifically associated with nuclear bodies (NBs) whose functions are yet unknown. Two of the NB-associated proteins, PML and Sp100, are induced by IFN. Here we show that overexpression of PML and not Sp100 induces resistance to infections by vesicular stomatitis virus (VSV) (a rhabdovirus) and influenza A virus (an orthomyxovirus) but not by encephalomyocarditis virus (a picornavirus). Inhibition of viral multiplication was dependent on both the level of PML expression and the multiplicity of infection and reached 100-fold. PML was shown to interfere with VSV mRNA and protein synthesis. Compared to the IFN mediator MxA protein, PML had less powerful antiviral activity. While nuclear body localization of PML did not seem to be required for the antiviral effect, deletion of the PML coiled-coil domain completely abolished it. Taken together, these results suggest that PML can contribute to the antiviral state induced in IFN-treated cells.  相似文献   

13.
Promyelocytic leukemia protein (PML) nuclear bodies are dynamic and heterogeneous nuclear protein complexes implicated in various important functions, most notably tumor suppression. PML is the structural component of PML nuclear bodies and has several nuclear splice isoforms that share a common N-terminal region but differ in their C termini. Previous studies have suggested that the coiled-coil motif within the N-terminal region is sufficient for PML nuclear body formation by mediating homo/multi-dimerization of PML molecules. However, it has not been investigated whether any of the C-terminal variants of PML may contribute to PML body assembly. Here we report that the unique C-terminal domains of PML-II and PML-V can target to PML-NBs independent of their N-terminal region. Strikingly, both domains can form nuclear bodies in the absence of endogenous PML. The C-terminal domain of PML-II interacts transiently with unknown binding sites at PML nuclear bodies, whereas the C-terminal domain of PML-V exhibits hyperstable binding to PML bodies via homo-dimerization. This strong interaction is mediated by a putative α-helix in the C terminus of PML-V. Moreover, nuclear bodies assembled from the C-terminal domain of PML-V also recruit additional PML body components, including Daxx and Sp100. These observations establish the C-terminal domain of PML-V as an additional important contributor to the assembly mechanism(s) of PML bodies.  相似文献   

14.
Acute promyelocytic leukemia (APL) is specifically associated to a t(15; 17) translocation which fuses a gene encoding a nuclear receptor for retinoic acid, RARα, to a previously unknown gene PML. The PML protein is localized in the nucleus on a specific domain of unknown function (PML nuclear bodies, NB) previously detected with autoimmune sera from patients with primary biliary cirrhosis (PBC). These bodies are nuclear matrix-associated and all of their identified components (PML, Sp100, and NDP52) are sharply upregulated by interferons. We show that autoantibodies against both PML and Sp100 are usually associated in sera with multiple nuclear dot anti-nuclear antibodies and demonstrate that PML is an autoantigen, not only in PBC, but also in other autoimmune diseases. In APL, the PML/RARα fusion interferes with both the retinoic acid (RA) response and PML localization on nuclear bodies, but the respective contribution of each defect to leukemogenesis is unclear. RA induces the terminal differentiation of APL blasts, yielding to complete remissions, and corrects the localization of NB antigens. Arsenic trioxide (As2O3) also induces remissions in APL, seemingly through induction of apoptosis. We show that in APL, As2O3leads to the rapid reformation of PML bodies. Thus, both agents correct the defect in NB antigen localization, stressing the role of nuclear bodies in the pathogenesis of APL.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号