首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin regulates glucose homeostasis by binding and activating the insulin receptor, and defects in insulin responses (insulin resistance) induce type 2 diabetes. SH2-B, an Src homology 2 (SH2) and pleckstrin homology domain-containing adaptor protein, binds via its SH2 domain to insulin receptor in response to insulin; however, its physiological role remains unclear. Here we show that SH2-B was expressed in the liver, skeletal muscle, and fat. Systemic deletion of SH2-B impaired insulin receptor activation and signaling in the liver, skeletal muscle, and fat, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and IRS2 and activation of the phosphatidylinositol 3-kinase/Akt and the Erk1/2 pathways. Consequently, SH2-B-/- knockout mice developed age-dependent hyperinsulinemia, hyperglycemia, and glucose intolerance. Moreover, SH2-B directly enhanced autophosphorylation of insulin receptor and tyrosine phosphorylation of IRS1 and IRS2 in an SH2 domain-dependent manner in cultured cells. Our data suggest that SH2-B is a physiological enhancer of insulin receptor activation and is required for maintaining normal insulin sensitivity and glucose homeostasis during aging.  相似文献   

2.
Muscle-specific Pparg deletion causes insulin resistance   总被引:15,自引:0,他引:15  
Thiazolidinediones (TZDs) are insulin-sensitizing drugs and are potent agonists of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Although muscle is the major organ responsible for insulin-stimulated glucose disposal, PPAR-gamma is more highly expressed in adipose tissue than in muscle. To address this issue, we used the Cre-loxP system to knock out Pparg, the gene encoding PPAR-gamma, in mouse skeletal muscle. As early as 4 months of age, mice with targeted disruption of PPAR-gamma in muscle showed glucose intolerance and progressive insulin resistance. Using the hyperinsulinemic-euglycemic clamp technique, the in vivo insulin-stimulated glucose disposal rate (IS-GDR) was reduced by approximately 80% and was unchanged by 3 weeks of TZD treatment. These effects reveal a crucial role for muscle PPAR-gamma in the maintenance of skeletal muscle insulin action, the etiology of insulin resistance and the action of TZDs.  相似文献   

3.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

4.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30   总被引:116,自引:0,他引:116  
Here we investigated the biological functions of adiponectin/ACRP30, a fat-derived hormone, by disrupting the gene that encodes it in mice. Adiponectin/ACRP30-knockout (KO) mice showed delayed clearance of free fatty acid in plasma, low levels of fatty-acid transport protein 1 (FATP-1) mRNA in muscle, high levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in adipose tissue and high plasma TNF-alpha concentrations. The KO mice exhibited severe diet-induced insulin resistance with reduced insulin-receptor substrate 1 (IRS-1)-associated phosphatidylinositol 3 kinase (PI3-kinase) activity in muscle. Viral mediated adiponectin/ACRP30 expression in KO mice reversed the reduction of FATP-1 mRNA, the increase of adipose TNF-alpha mRNA and the diet-induced insulin resistance. In cultured myocytes, TNF-alpha decreased FATP-1 mRNA, IRS-1-associated PI3-kinase activity and glucose uptake, whereas adiponectin increased these parameters. Our results indicate that adiponectin/ACRP30 deficiency and high TNF-alpha levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.  相似文献   

5.
Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.  相似文献   

6.
Hepatic insulin sensitizing substance (HISS) has been shown to account for 55% of the action of insulin in the fed state. HISS blockade leads to HISS-dependent insulin resistance (HDIR). The objective of this study was to test the hypothesis that insulin resistance produced by hemorrhage was HDIR. Insulin sensitivity was measured using the rapid insulin sensitivity test (RIST), which can identify HISS-dependent and independent components. Hemorrhage was performed in anesthetized rats by removing blood to reduce mean arterial pressure to 50 mmHg. Subsequent to blood removal, a RIST was performed. The results show that hemorrhage caused complete HDIR as subsequent administration of atropine failed to further reduce insulin sensitivity. However, the post-hemorrhage RIST was reduced by 34% and not the anticipated 55%. The lesser reduction of the RIST index by hemorrhage was related to reduced apparent volume of distribution and clearance of insulin, since occlusion of the superior mesenteric artery, which caused a similar decrease in portal venous flow as did hemorrhage, resulted in a similar degree of reduction of insulin clearance. The response to administered insulin was confounded by the impact of reduced hepatic blood flow on insulin metabolism that resulted in an increase in the HISS independent (direct) action of injected insulin against a background of complete HDIR. HDIR represents a useful hormonal response to assure a hyperglycemic response to hemorrhage.  相似文献   

7.
In obese individuals, white adipose tissue (WAT) is infiltrated by large numbers of macrophages, resulting in enhanced inflammatory responses that contribute to insulin resistance. Here we show that expression of the CXC motif chemokine ligand-14 (CXCL14), which targets tissue macrophages, is elevated in WAT of obese mice fed a high fat diet (HFD) compared with lean mice fed a regular diet. We found that HFD-fed CXCL14-deficient mice have impaired WAT macrophage mobilization and improved insulin responsiveness. Insulin-stimulated phosphorylation of Akt kinase in skeletal muscle was severely attenuated in HFD-fed CXCL14+/- mice but not in HFD-fed CXCL14-/- mice. The insulin-sensitive phenotype of CXCL14-/- mice after HFD feeding was prominent in female mice but not in male mice. HFD-fed CXCL14-/- mice were protected from hyperglycemia, hyperinsulinemia, and hypoadiponectinemia and did not exhibit increased levels of circulating retinol-binding protein-4 and increased expression of interleukin-6 in WAT. Transgenic overexpression of CXCL14 in skeletal muscle restored obesity-induced insulin resistance in CXCL14-/- mice. CXCL14 attenuated insulin-stimulated glucose uptake in cultured myocytes and to a lesser extent in cultured adipocytes. These results demonstrate that CXCL14 is a critical chemoattractant of WAT macrophages and a novel regulator of glucose metabolism that functions mainly in skeletal muscle.  相似文献   

8.
目的:检测SD大鼠脂联素受体的分布,观察大鼠胰岛素抵抗(IR)形成中脂联素受体(Adipok)基因表达及运动的影响。方法:46只雄性SD大鼠随机分为4组(n=12),以高脂膳食喂养诱导IR,同时运动组实施10周游泳运动干预。结果:AdipoR1/R2mRNA分别在骨骼肌和肝脏高表达(P<0.05);H组骨骼肌AdipoR1和肝脏AdipoR2mRNA表达显著低于C组(P<0.05)。结论:骨骼肌和肝脏AdipoR1/R2mRNA表达的下调可能是高脂大鼠IR形成的机制之一,未观察到运动干预的显著影响。  相似文献   

9.
Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.  相似文献   

10.
Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.  相似文献   

11.
Conjugated linoleic acid (CLA) causes insulin resistance and hepatic steatosis in conjunction with depletion of adipokines in some rodent models. Our objective was to determine whether the maintenance of adipokines, mainly leptin and adiponectin, by either removing CLA from diets or using an adiponectin enhancer, rosiglitazone (ROSI), could attenuate CLA-induced insulin resistance. Male C57BL/6 mice were consecutively fed two experimental diets containing 1.5% CLA mixed isomer for 4 weeks followed by a diet without CLA for 4 weeks. CLA significantly depleted adiponectin but not leptin and was accompanied by hepatic steatosis and insulin resistance. These effects were attenuated after switching mice to the diet without CLA along with restoration of adiponectin. To further elucidate the role of adiponectin in CLA-mediated insulin resistance, ROSI was used in a subsequent study in male ob/ob mice fed either control (CON) or CLA diet. ROSI maintained significantly higher adiponectin levels in CON- and CLA-fed mice and prevented the depletion of epididymal adipose tissue and the development of insulin resistance. In conclusion, we show that insulin resistance induced by CLA may be related more to adiponectin depletion than to leptin and that maintaining adiponectin levels alone either by removing CLA or using ROSI can attenuate these effects.  相似文献   

12.
13.

Background

We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied.

Methods

We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay.

Results

Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids.

Conclusions

Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility.

General significance

Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.  相似文献   

14.
Idiopathic nephrotic syndrome (INS) is a genetically heterogeneous group of disorders characterized by proteinuria, hypoalbuminemia, and edema. Because it typically results in end-stage kidney disease, the steroid-resistant subtype (SRNS) of INS is especially important when it occurs in children. The present study included 29 affected and 22 normal individuals from 17 SRNS families; genome-wide analysis was performed with Affymetrix 250K SNP arrays followed by homozygosity mapping. A large homozygous stretch on chromosomal region 12p12 was identified in one consanguineous family with two affected siblings. Direct sequencing of protein tyrosine phosphatase receptor type O (PTPRO; also known as glomerular epithelial protein-1 [GLEPP1]) showed homozygous c.2627+1G>T donor splice-site mutation. This mutation causes skipping of the evolutionarily conserved exon 16 (p.Glu854_Trp876del) at the RNA level. Immunohistochemistry with GLEPP1 antibody showed a similar staining pattern in the podocytes of the diseased and control kidney tissues. We used a highly polymorphic intragenic DNA marker-D12S1303-to search for homozygosity in 120 Turkish and 13 non-Turkish individuals in the PodoNet registry. This analysis yielded 17 candidate families, and a distinct homozygous c.2745+1G>A donor splice-site mutation in PTPRO was further identified via DNA sequencing in a second Turkish family. This mutation causes skipping of exon 19, and this introduces a premature stop codon at the very beginning of exon 20 (p.Asn888Lysfs*3) and causes degradation of mRNA via nonsense-mediated decay. Immunohistochemical analysis showed complete absence of immunoreactive PTPRO. Ultrastructural alterations, such as diffuse foot process fusion and extensive microvillus transformation of podocytes, were observed via electron microscopy in both families. The present study introduces mutations in PTPRO as another cause of autosomal-recessive nephrotic syndrome.  相似文献   

15.
16.
The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes.  相似文献   

17.
Shear stress,vascular remodeling and neointimal formation   总被引:10,自引:0,他引:10  
The role of shear stress in atherosclerosis has been well documented. However, its role in restenosis was underexposed. In this paper a novel in vivo measuring technique and several of its applications related to restenosis will be described. The technique consists of a combination of 3D reconstruction of blood vessels and computational fluid dynamics (CFD). The 3D imaging techniques use either of 3D intravascular ultrasound (IVUS) as a stand-alone technique or a fusion of biplane angiography and IVUS (ANGUS). CFD is applied in order to relate local shear stress distribution to the morphology of the vessel wall. In the applications of these techniques it will be demonstrated that shear stress plays a role in the prediction of neointimal formation in in-stent restenosis and in vascular remodeling after balloon angioplasty. Attempts to locally increase shear stress by a newly developed flow divider indicate that shear stress reduce in-stent neointimal formation by 50%.  相似文献   

18.
Previous reports showed that recombinant fragments of adiponectin (adipo) displayed pharmacological effects when injected into rodents, but the relevance of these observations to the physiological function of adipo is unclear. We generated Adipo(-/-) mice by gene targeting. Adipo(-/-) mice are fertile with normal body and fat pad weights. Plasma glucose and insulin levels of Adipo(-/-) and Adipo(+/+) mice are similar under fasting conditions and during an intraperitoneal glucose tolerance test (GTT). Insulin tolerance test (ITT) also produces similar plasma glucose and insulin levels in the two groups of mice. Hyperinsulinemic-euglycemic clamp analysis showed that Adipo(-/-) and Adipo(+/+) mice have similar glucose infusion rates to maintain a similar serum glucose. High-fat diet feeding for 7 months led to similar weight gain and similar GTT and ITT responses. We next measured beta-oxidation and found it to be significantly increased in muscle and liver of Adipo(-/-) mice. In conclusion, our study indicates that absence of adipo causes increased beta-oxidation but does not cause glucose intolerance or insulin resistance in mice.  相似文献   

19.

Objective

To investigate the relation of circulating four adipokines (apelin, vaspin, visfatin, adiponectin) with markers of insulin sensitivity in large for gestational age (LGA) infants.

Patients and methods

Forty LGA infants (20 LGA born from diabetic mothers and 20 LGA born from non-diabetic mothers) and 34 appropriate for gestational age (AGA) infants were recruited. Hyperinsulinism and insulin resistance was evaluated using the homeostasis model assessment (HOMA-IR), fasting glucose-to-insulin ratio (FGIR), quantitative insulin-sensitivity check index (QUICK-I) from fasting samples. Plasma adiponectin and vaspin levels were determined by radioimmunoassay. Determination of visfatin and apelin levels was performed by enzyme immunoassay.

Results

HOMA-IR, apelin and visfatin levels (p < 0.001, p < 0.001, p < 0.001, respectively) were significantly elevated and adiponectin levels, FGIR and QUICK-I values. (p < 0.001, p < 0.001, p < 0.05, respectively) were significantly lower in the LGA group. Vaspin levels were higher in the LGA group than AGA neonates without a significance. The LGA infants with diabetic mother had significantly higher visfatin, apelin, HOMA-IR values, fasting insulin levels and significantly lower adiponectin, FGIR, QUICK-I values. Apelin and visfatin were correlated positively, and adiponectin was correlated negatively with birthweight, HOMA-IR values and fasting insulin levels.

Conclusion

Based on the findings of this study, it is too difficult to explain relation between birthweight and these adipocytokines, but findings of high insulin, HOMA-IR, visfatin, apelin and low adiponectin levels in the LGA neonates showed that these adipocytokines can be used as a good predictor for metabolic syndrome.  相似文献   

20.
Insulin resistance and hyperinsulinemia are commonly present in obesity and pre-diabetes, and hyperinsulinemia is both a marker and a cause for insulin resistance. However, the molecular link between hyperinsulinemia and insulin resistance remains elusive. The present study examined the effect of chronic insulin treatment on the reactive oxygen species (ROS) production, insulin signalling and insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The results showed that chronic insulin treatment significantly increased the intracellular generation of superoxide anion, hydrogen peroxide and hydroxyl radical. ROS induced by chronic insulin treatment inhibited insulin signalling and glucose uptake, induced endoplasmic reticulum (ER) stress and JNK activation. Furthermore, these effects were reversed by antioxidants N-acetylcysteine, superoxide dismutase or catalase. These results suggested that ROS, ER stress and JNK pathway are involved in insulin resistance induced by chronic insulin treatment. Therefore, oxidative stress could be a potential interventional target for hyperinsulinemia-induced insulin resistance and related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号