首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

2.
Summary The hypothalamic neurosecretory system of normal dogs was studied by light and electron microscopy after perfusion-fixation. In the supraoptic nucleus most neurons are loaded with elementary neurosecretory granules having a content of low electron density. Neurons with less neurosecretory material and signs of enhanced synthetic activity, as recognized by the changes in the endoplasmic reticulum, were also observed.The vesiculated neurons ofJewell were studied under the electron microscope and various stages of development were described. It was postulated that they originate by a localized process of cytoplasmic cytolysis which ends in the formation of a large aqueous intracellular cavity limited by a plasma membrane. The possible significance of these vesiculated neurones is discussed. Some few myelinated neurosecretory axons are found in the supraoptic nucleus.The neurons of the paraventricular nucleus are smaller and contain less neurosecretory material. This is abundant and very pale in the axons. The median eminence consists of an inner zone, mainly occupied by the neurosecretory axons of the hypothalamic-neurohypophysial tracts, and an outer zone in which some neurosecretory axons end on the capillary of the portal system. This outer zone contains numerous axons with the axoplasm rich in neurofilaments and some containing granulated and non-granulated synaptic vesicles. Some neurons with granulated vesicles were observed in this region. The adrenergic nature of these neurons and axons is postulated.The infundibular process of the neurohypophysis shows small axons with discrete amounts of elementary granules and vesicles of synaptic type at the endings. Some enlarged axons having, in addition, large polymorphic bodies are observed and related to the Herring bodies.The size and morphology of the granules are analyzed along the entire hypothalamic-neurohypophysial system. The changes in diameter and electron density are related to the maturation of the granules and the possible significance of such evolution.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-66).  相似文献   

3.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

4.
Summary The corticotropin releasing factor (CRF)-synthesizing perikarya and neural processes were detected at ultrastructural level in the hypothalamic paraventricular nucleus and in the median eminence of control and colchicine-pretreated rats. The unlabelled antibody peroxidase-antiperoxidase complex (PAP) immunohistochemical method was used in a pre-embedding manner, on thick, non-frozen sections. In CRF-perikarya, neurosecretory granules (80–120 nm in diameter), free ribosomes, and the rough endoplasmic reticulum were labelled. Unlabelled axon terminals formed asymmetric synapses on CRF-containing perikarya and dendrites. Immunolabelled axons terminated in the palisadic zone of the median eminence.  相似文献   

5.
Summary The arcuate complex, comprising the nucleus and the outer zone of the median eminence, was studied under the electron microscope in control and castrated rats of both sexes. One month after castration the arcuate neurons show signs of hyperactivity characterized by dilated cisternae of the endoplasmic reticulum, a large nucleolus, situated near the nuclear envelope and fewer granulated vesicles. The surrounding neuropile shows an increase in the number of granulated vesicles above the control level. Six months after castration the changes already described are more accentuated. In the outer zone of the median eminence the axons and terminals show a considerable increase in the number of granulated vesicles which is of the order of 50 per cent above the control. A correlation between the granulated vesicles and the high content in dopamine of the arcuate complex is postulated. The ultrastructural changes observed in the arcuate complex, after castration, are discussed in relation to the current knowledge on the histophysiology of this region of the hypothalamus and specially on the probable regulatory effect of monoamines on the secretion of gonadotrophins.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skilful assistence.  相似文献   

6.
Summary Specially in stress conditoin, some hyaline droplets occur in the perikarya of the neurosecretory hypothalamic cell of Zoarces viviparus. They first appear as filamentous macromolecular material in the intracisternal space, then tend to accumulate in the form of irregular electron dense rods or reticulum. The neurosecretory cells containing such hyaline bodies have usually few elementary neurosecretory granules and dilated endoplasmic reticulum.Aided by a Grant from NATO and the Deutsche Forschungsgemeinschaft.My thanks are due to Prof. Dr. E. Lindner and Doz. Dr. K. H. Andres for their kind help in the explanation of electronmicrographs.  相似文献   

7.
Summary The infundibular processes of the neurohypophysis of male and female rats were studied after different periods of castration. After seven days an increase in neurosecretory granules was observed. Two types of neurosecretory nerve endings were identified: dark ones, with dense neurosecretory elementary granules of 1600 A, and clear ones, with lighter neurosecretory granules of 1800 A. Protoplasmatic pituicytes showed a large increase in lipid granules together with a general hypertrophy. After one week of castration but with hormonal therapy the protoplasmatic pituicytes appeared normal or even showed less lipid granules than in the controls.With one month of castration the changes already mentioned in the nerve endings and pituicytes were more pronounced and after six months even more accentuated. Two types of neurosecretory nerve endings were clearly identified and the protoplasmatic pituicytes were loaded with lipid granules.The probable significance of the two different neurosecretory axons was discussed in relation to recent studies on the isolation of neurosecretory terminals from the neurohypophysis. The changes in the protoplasmatic pituicytes were considered in relation to the possible significance of the lipid granules.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skillful assistence.Associated Investigator, Consejo Nacional de Investigaliones Científicas y Técnicas, Argentina.  相似文献   

8.
Summary The general ultrastructural features of the hypothalamo-neurohypophysial system in rats with hereditary hypothalamic diabetes insipidus (DI-rats, Brattleboro strain) are described. There is no decisively distinguishing difference between the neurons of the supraoptic and paraventricular nuclei. The neurons of both nuclei show signs of active protein synthesis. The perikarya of the neurons are markedly hypertrophic, the nuclei are large and the nucleoli prominent. In the cytoplasm there are numerous ribosomes, abundant rough-surfaced endoplasmic reticulum and extensive Golgi complexes. However, very few neurosecretory granules are to be seen. The axons of the hypothalamo-neurohypophysial tract are likewise enlarged and the paucity of neurosecretory granules is a striking feature also in the area of the tract. The majority of nerve endings in the posterior pituitary of DI-rats are devoid of neurosecretory granules. Microvesicles are abundant in the nerve endings and there are findings which suggest that microvesicles are involved either in endoor exocytosis. The signs of active protein synthesis and the concomitant paucity of neurosecretory granules are interpreted to imply transportation of the secretory proteins in an extragranular phase. The possible mode of release of the secretory proteins from the nerve endings and the role of microvesicles therein are discussed.This study has been supported by grants from the Finnish Cultural Foundation and the Sigrid Jusélius Foundation. The collaboration of Professors Antti Arstila and Tapani Vanha-Perttula is gratefully acknowledged.The Brattleboro-rats were kindly provided by Dr. Heinz Valtin, to whom we express our thanks.  相似文献   

9.
Summary Horseradish peroxidase (HRP) has been used as a protein tracer in order to visualize the ultrastructural sites of the orthograde transport of protein macromolecules in the hypothalamo-neurohypophysial tract of the rat. After a local injection of HRP within the supraoptic nucleus, the reaction product was observed: (1) mainly in tubules of the smooth endoplasmic reticulum in the more proximal part of the axons, and (2) in granules and microvesicles of the axon terminals. Observations on thick sections clearly showed the existence of a relationship between the smooth endoplasmic reticulum containing HRP and the labeled granules or microvesicles. These data are in good agreement with previous findings showing the existence of direct continuity between tubules of the smooth endoplasmic reticulum and a fraction of the neurosecretory granules and microvesicles. This evidence further reinforces the hypothesis that the latter organelles may possibly originate locally in the axons from the tubules of the smooth endoplasmic reticulum which may therefore be proposed as a possible vehicle for a non-granular intra-axonal transport of neurosecretory material in neurosecretory neurons.  相似文献   

10.
Summary The rat median eminence contains at least three kinds of granules or vesicles: 1. large electron-dense granules (perhaps carriers of neurohypophysial hormones), 2. small electron-dense granules with or without haloes (perhaps carriers of catecholamines) and 3. synaptic vesicle-like structures (perhaps carriers of acetylcholine). The former two electrondense granules exist in separate axons but they coexist with the latter vesicles in the same axons.The pars nervosa shows basically a similar structure to the median eminence. However, the axons containing the small electron-dense granules are very few. In the pars tuberalis, there are at least two types of cells: the cells of one type contain much cytoplasm with large round nuclei and those of the other type contain a small amount of cytoplasm with polymorphic nuclei. The cells of the former include multivesicular bodies and secretory granules, but those of the latter do not. Some of capillaries of the primary plexus are surrounded by the cells of the pars tuberalis on one side and by neurosecretory axon endings on the other side.The median eminence contains high concentration of acetylcholine or an acetylcholine-like substance and shows neurohypophysial hormone activity.Aided by Grant A-3678 from the United States National Institute of Arthritis and Metabolic Diseases. The authors are indebted to Dr. Welsh, Harvard University, for the kind gift of Mytolon.  相似文献   

11.
Summary After perfusion with formaldehyde and glutaraldehyde the supraoptic nucleus and infundibular process of the neurohypophysis of the rat were dissected and prepared for electronmicroscope observation. This study was carried out in specimens under normal water balance, in others fed on dry food and in rats submitted to forced hydration.Two extreme types of neurons with intermediary stages were recognized in the normal supraoptic nucleus. The main difference between them is in the content of ribosomes, development and dilatation of the vacuolar system and in the number of elementary neurosecretory granules. In both types lysosome-like particles are observed. The volume of the elementary granules increases 1.7 times along the hypothalamic-hypophyseal tract while the increase in the dense core of the granule is of the order of 4.3 times.After forty-eight hours on dry food there is a general depletion of secretory granules from the perikaryon and nearby axons, the ribosomes are numerous and the endoplasmic reticulum is dilated in all cells and contains a macromolecular filamentous material. With more prolonged dehydration the neurosecretory granules reappear in relation to the Golgi complex and the vacuolar system becomes progressively flattened. With forced hydration the number of granules in the perikaryon increases considerably.These observations are interpreted as indicative that the early stages of synthesis take place at the level of the ribosomes. The product, in a dilute macromolecular form, is transferred into the cisternae of the endoplasmic reticulum and then condensed into granules within the Golgi complex. The increase in size of the granules along the axon is discussed in relation to the progressive increase in hormone content.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research No 963-65.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas.  相似文献   

12.
Summary In untreated, pregnant and thirsting rats the neurosecretory hypothalamic areas were investigated by means of the immunoperoxidase technique in order to demonstrate vasopressin- and oxytocin containing elements at the light- and electron microscopic level. In addition, chromalum-hematoxylinphloxin (CHP) staining and conventional double staining of ultrathin sections were used. The areas investigated included the anterior and posterior supraoptic nuclei, the paraventricular nuclei, the numerous accessory cell clusters in the region between the tractus opticus and the third ventricle as well as the median eminence. In all nuclei and in the accessory cell clusters, the number of vasopressin-reactive neurons exceeds that of oxytocin-reactive neurons. Compared with the anterior supraoptic nucleus, the posterior supraoptic nucleus and the accessory cell clusters react more heavily to prolonged thirst. In the median eminence the neurosecretory axons display close contacts with the portal vessels not only in its lateral portion but in thirsting animals also around the mid-line. There the internal layer is broadened and vasopressin-positive tanycytic processes reach the external zone. Parasagittally, fine vasopressin-positive material can be traced from the internal layer to small deposits at the portal vessels. In long term thirsting animals the typical feature of swollen axons exhibits a characteristic distribution in the median eminence and renders a distinct positive reaction to anti-vasopressin. The release of peptide hormones from the perikarya and from the axons within the nuclei as well as the mode of release within the median eminence are discussed. The significance of the positive immunostaining of the ependymal tanycytes and of some perikarya of the suprachiasmatic nucleus must be reconsidered by further studies.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/1) and Stiftung VolkswagenwerkDedicated to Professor Berta Scharrer on the occasion of her 70th birthdayThe author wishes to express her special gratitude to Dr. L.A. Sternberger for supplying the peroxidaseantiper oxidase-complex and to Dr. H. Stein (Pathologisches Institut der Universität Kiel) for supplying Anti-IgG. The skilful technical assistance of Mrs. H. Prien and Mrs. H. Schöning is thankfully acknowledged  相似文献   

13.
Summary The morphological effects of colchicine on the entire neurosecretory (NS) tract and on various hypothalamic nuclei have been studied. The perturbation in axonal flow, indicated by the accumulation of NS material, coincide with fragmentation of the cytoplasmic membranes, i. e. the Golgi apparatus and the endoplasmic reticulum, whereas the neurotubules remain relatively well preserved. Autophagic destruction of NS material is observed along the entire length of the NS fibres. The rapid and systematic changes in the axoplasmic reticulum, known to store calcium, lead us to envisage a role for this system — similar to that of the sarcoplasmic reticulum — in controlling the transport of NS vesicles. The junctional zone between the stalk and the neural lobe seems to play a particular rôle in the transport of NS material to the posthypophysial terminals of the NS axons. Colchicine provokes an increase in dense-cored vesicles in most of the neurons of the other hypothalamic nuclei studied: arcuate, suprachiasmatic, periventricular and ventromedial. Membranous alterations are also observed in these sites. Colchicine administered to animals which were hypothyroid, castrated or adrenalectomized, reveals stimulated neurons, identified by their excessive content of dense-cored vesicles. These neurons display no specific localization, for they occur in all hypothalamic nuclei, irrespective of the stimulation. The frequency of stimulation of neurons of the periventricular nucleus is striking.  相似文献   

14.
Summary Detailed histochemical studies have been made on the distribution of various enzymes such as phosphatases, cholinesterases, glycolytic enzymes and respiratory enzymes in various components of the hypothalamus with special reference to the supraoptic and paraventricular nuclei of the Squirrel Monkey. Cytological studies have also been made by the McManus, Einarson, Gomori and Bargmann methods.A few neurons of these nuclei showed scanty Gomori-positive material in the cytoplasm for the Gomori and Bargmann methods. Nissl granules were located in the peripheral cytoplasm of most neurons. No glycogen granules were observed in these neurons. For these reasons, the Squirrel Monkey, like the rat, may not be a suitable species for the study of neurosecretory phenomena.The axons of these neurons were negative for the specific cholinesterase test, though the perikaryon and some parts of the processes gave a moderately positive reaction. These neurons may be non-cholinergic and the cholinergic fibers from an unknown nucleus may end in synapses on their cell bodies. Blood vessels and glial cells in the neurosecretory nuclei showed non-specific cholinesterase activity. This enzyme may hydrolyze the acetylcholine which has escaped splitting by specific cholinesterase. Alkaline phosphatase and acid phosphatase in these neurons may be involved in the metabolism concerned with the production of neurosecretory material. The neurons may be physicochemical receptors and may get enough energy and raw material to synthesize the neurosecretory material from the rich blood supply. Neurons of the supraoptic and paraventricular nuclei as well as other hypothalamic neurons, like neurons of other regions of the brain, are well equipped with the enzymes of the glycolytic pathways and the tricarboxylic acid cycle. Since the glial cells of these nuclei have amylophosphorylase activity and glycolytic pathways, they may work as energy donators to the neurons of the neurosecretory nuclei. T. R. Shanthaveerappa in previous publications.  相似文献   

15.
Summary The effect of colchicine on the transport of proteins in the hypothalamo-neurohypophyseal tract of the rat was studied after injection of (35S) cysteine into the supraoptic nucleus (SON) region. Colchicine, dissolved in distilled water and administered subarachnoidally, inhibited the axonal transport of labelled proteins into the neurohypophysis: the radioactivity that was recovered in neurohypophyseal TCA precipitable material was markedly decreased and hardly any radioactivity was found in the neurohypophyseal proteins which were separated by polyacrylamide gel disc electrophoresis.As revealed by electron microscopy the SON cell bodies showed marked changes after treatment with colchicine: a deeply folded nucleolemma; a pronounced, granular nucleolus; a dispersed chromatin; a zonal distribution of cell organelles with mitochondria and lysosomes accumulated at the periphery, crowded ribosomes, often arranged as polyribosomes and richly branching short profiles of endoplasmic reticulum filled with filamentous material forming an inner perinuclear zone separated by enlarged Golgi complexes.The profiles of elongated Herring bodies in the infundibulum were increased. The axon terminals were filled with heavily osmiophilic neurosecretory granules. The neurofilaments were slightly or moderately increased in number. No apparent changes were observed with regard to the neurotubuli in the SON neurons. The glial cells of the supraopticoneurohypophyseal tract showed reactive changes with a proliferation of filamentous elements. The biochemical and ultrastructural findings are discussed especially with respect to the mechanisms of transport and release of neurosecretory granules.  相似文献   

16.
Summary The intra-axonal organization of the smooth endoplasmic reticulum was studied in the neurohypophysis of rats during and after water deprivation. Parallel to conventional electron microscopy, the material was treated with a double impregnation staining technique specifically designed to contrast the intracellular membranous system. In conventionally stained ultrathin sections from severely dehydrated rats most axons appeared to be free of membranous organelles, whereas corresponding axons treated with the double-impregnation technique generally exhibited a highly developed system of smooth endoplasmic reticulum. In axonal endings, both techniques revealed a profusion of microvesicles in intimate relationship with tubular elements of the smooth endoplasmic reticulum. In short-term (12 h) rehydrated rats, a similarly developed system of smooth endoplasmic reticulum was still observed at all axonal levels with both procedures. After 24 to 48 h of rehydration the tubules of the smooth endoplasmic reticulum exhibited, in double impregnated material, numerous dilatations which resembled the adjacent neurosecretory granules. In conventionally stained ultrathin sections, an accumulation of electron dense material occurred within tubules of the smooth endoplasmic reticulum in the more proximal axonal segments, while in the more terminal segments, which contained numerous elongated granules, membrane continuity was frequently observed between newly formed granules and the smooth endoplasmic reticulum. After 7 days of rehydration the general pattern of the axonal smooth endoplasmic reticulum was comparable to that in untreated rats. These results are discussed in the light of a suggested involvement of the axonal smooth endoplasmic reticulum in the non-granular transport of neurosecretory material in connection with (1) storage in distally formed granules, and (2) release via microvesicles. Acknowledgements: The authors wish to express their gratitude to Mrs. M. Balmefrézol for her skillful technical assistance  相似文献   

17.
Summary Tadpoles of Xenopus laevis were treated with propylthiouracil from the second half of prometamorphosis. Sagittal sections of the head region were stained a.o. with pseudoisocyanine. The goitrogen caused a degranulation of neurosecretory cells in the dorsal part of the preoptic region of the hypothalamus, suppressed the development of ventral neurosecretory cells and of the outer zone of the median eminence, stimulated the thyrotropic cells in the adenohypophysis, caused a hypertrophy of the thyroids, and impaired metamorphosis. Returning the animals to tap water had reciprocal effects and restored the normal activity of the hypothalamus, adenohypophysis and thyroid glands. It is concluded that thyroid hormones exert a morphogenetic influence upon hypothalamic centres and the outer zone of the median eminence and that a negative feed back relation exists between the thyroids on the one hand and the dorsal neurosecretory cells and the thyrotropic cells on the other.The author thanks Prof. Dr. P. G. W. J. van Oordt for his active interest and helpful advice, and Miss Tineke Aafjes for technical assistance.  相似文献   

18.
Zs. Liposits  W.K. Paull 《Peptides》1985,6(6):1021-1036
The corticotropin releasing factor (CRF)-immunoreactive paraventriculo-infundibular neuronal system of long-term adrenalectomized and adrenalectomized-short term dexamethasone treated rats was analyzed at the ultrastructural level using the preembedding peroxidase anti-peroxidase complex (PAP)-immunohistological method. In both groups of animals, parvocellular neurons located in the medial and dorsal subnuclei of the paraventricular nucleus (PVN) showed CRF-like immunoreactivity. The perikarya contained hypertrophied rough endoplasmic reticulum (rER) with dilated cisternae, active Golgi-complexes and numerous neurosecretory granules. The majority of the neurosecretory granules measured 80–120 nm. Dendrites of CRF-immunoreactive neurons contained labeled vesicles, secretory granules, bundles of microtubules, a well-developed smooth endoplasmic reticulum (sER) complex and free ribosomes. Unlabeled terminal boutons of axons were observed to synapse on dendrites and somata of CRF-neurons. In addition, CRF perikarya were found in direct somato-somatic apposition with both CRF-immunopositive and immunonegative parvocellular cells. Retraction of glial processes and the existence of puncta adherentia between the cell membranes characterized these appositions. Varicose CRF axons within the median eminence contained hypertrophied sER, labeled vesicles and neurosecretory granules. The preterminal portions of the CRF-axons were dilated and possessed many labeled 80–120 nm diameter granules. CRF-terminals were greatly enlarged and established direct neurohemal contacts with the external limiting basal lamina of portal vessels without the interposition of tanycytic ependymal foot-processes. These tanycytes were not CRF immunopositive. CRF positive terminals contained clusters of microvesicles, labeled small vesicles and multivesicular bodies, but fewer granular elements than were observed within the preterminals. Many of the labeled organelles were attached to tubules of sER. Occasionally, CRF-axons were observed within the pericapillary space adjacent to portal vessels. The ultrastructural features of CRF-neurons, obtained from adrenalectomized and adrenalectomized plus short-term dexamethasone treated rats did not differ significantly from each other. The hormone content of the entire CRF-neuron was greater in the steroid treated group. Adrenocorticotrophic hormone (ACTH) synthesizing cells in the pars distalis of adrenalectomized-dexamethasone treated rats also showed increased numbers of immunopositive secretory granules (150–320 nm in diameter). These ultrastructural morphological results provide evidence that the function of the paraventriculo-infundibular CRF-system is adrenal steroid hormone dependent and suggest the participation of glial and ependymal elements in the regulation of the system in this hyperfunctional state. The observed membrane specializations are indicative of ephaptic interactions between CRF-neurons and may serve a synchronizing function in adrenalectomized animals.  相似文献   

19.
Summary The distribution of cholinesterases in hypothalamo-hypophysial neurosecretory system of the White-crowned Sparrow has been examined histochemically. The perikarya of the neurosecretory cells of the paraventricular and supraoptic nuclei have a high acetylcholinesterase activity. Acetylcholinesterase activity also occurs in the cells of the infundibular nucleus. The proximal parts of the axons of the cells of the neurosecretory and infundibular nuclei have strong acetylcholinesterase activity and weak non-specific cholinesterase activity. In the median eminence, the activity of acetylcholinesterase is strongest in the palisade layer. In the pars nervosa, there is definite, although weak, acetylcholinesterase activity.This investigation was supported by grants from the National Institutes of Health to Professor Farner (B-1353) and to Dr. Kobayashi (A-3678).  相似文献   

20.
Summary Antisera, with cross reactive antibodies removed by affinity chromatography, were used in the immunoperoxidase-bridge technique to study the distribution of oxytocin and vasopressin together with neurophysin in the hypothalamo-neurohypophysial system of the rat. The hormones were demonstrated in different areas of the supraoptic nucleus (SON) and paraventricular nucleus (PVN), in neurosecretory fibres of the hypothalamoneurohypophysial tract, median eminence, and in nerve terminals of the neurohypophysis. Intact normal and rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain), and rats dehydrated by the administration of oral hypertonic saline were studied. In dehydrated rats the hormone concentration in the neurons, and the number of neurons containing hormone varied according to the time of dehydration stress.The observations support the hypotheses that: 1) oxytocin and oxytocinneurophysin, and vasopressin and vasopressin-neurophysin are synthesised in different neurons and are transported along different axons; 2) the SON and PVN are functionally indistinguishable in that neurons containing oxytocin or vasopressin are present in both nuclei; and 3) the two types of neurons respond to osmotic stimulation in a way that is qualitatively the same but quantitatively different.This work was supported by a grant from the Medical Research Council of New Zealand  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号