首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and characterization of a novel thiourea derivative of sphingomyelin (AD2765). In vitro assays using pure enzyme and/or cell extracts revealed that this compound inhibited the hydrolysis of BODIPY-conjugated or 14C-labeled sphingomyelin by acid sphingomyelinase and Mg2+-dependent neutral sphingomyelinase. Studies in normal human skin fibroblasts further revealed that AD2765 was taken up by cells and inhibited the hydrolysis of BODIPY-conjugated sphingomyelin in situ. In situ and in vitro studies also showed that this compound inhibited the synthesis of sphingomyelin from BODIPY-conjugated ceramide. The specificity of AD2765 for enzymes involved in sphingomyelin metabolism was demonstrated by the fact that it had no effect on the hydrolysis of BODIPY-conjugated ceramide by acid ceramidase or on the synthesis of BODIPY-conjugated glucosylceramide from BODIPY-conjugated ceramide. The overall effect of AD2765 on sphingomyelin metabolism was concentration-dependent, and treatment of normal human skin fibroblasts or cancer cells with this compound at concentrations > 10 microM led to an increase in cellular ceramide and cell death. Thus, AD2765 might be used to manipulate sphingomyelin metabolism in various ways, potentially to reduce substrate accumulation in cells from types A and B Niemann-Pick disease patients, and/or to affect the growth of human cancer cells.  相似文献   

2.
Free ceramide, glucosylceramide, and sphingomyelin were isolated from mature cells of adult rat small intestine. Free ceramide and ceramide cleaved from sphingomyelin by enzymatic hydrolysis were fractionated by thin-layer chromatography on borate-impregnated silica gel plates. Sphingoid bases were characterized by gas-liquid chromatography of aldehydes formed upon periodate oxidation. Fatty acids were quantified as methyl esters. Ceramide structures were confirmed by direct-inlet mass spectrometry. Free ceramide was found to contain two major long-chain bases in nearly equal quantity: sphingosine, mainly linked to palmitic acid, and 4D-hydroxysphinganine associated with C20 to C24 fatty acids, 22% being hydroxylated. Sphinganine occurred as a minor component linked to nonhydroxy fatty acids. Sphingomyelin contained the three long-chain bases and 63% of its ceramide was N-palmitoyl-sphingosine. Mass spectrometry of glucosylceramide confirmed 4D-hydroxyshingamine as the major sphingoid base associated preferentially with longer chain hydroxy fatty acids.  相似文献   

3.
Increased cellular ceramide accounts in part for UVB irradiation-induced apoptosis in cultured human keratinocytes with concurrent increased glucosylceramide but not sphingomyelin generation in these cells. Given that conversion of ceramide to non-apoptotic metabolites such as sphingomyelin and glucosylceramide protects cells from ceramide-induced apoptosis, we hypothesized that failed up-regulation of sphingomyelin generation contributes to ceramide accumulation following UVB irradiation. Because both sphingomyelin synthase and glucosylceramide synthase activities were significantly decreased in UVB-irradiated keratinocytes, we investigated whether alteration(s) in the function of ceramide transport protein (or CERT) required for sphingomyelin synthesis occur(s) in UVB-irradiated cells. Fluorescently labeled N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-ceramide) relocation to the Golgi was diminished after irradiation, consistent with decreased CERT function, whereas the CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (1R,3R isomer) (HPA-12) produced an equivalent effect. UVB irradiation also induced the rapid formation of a stable CERT homotrimer complex in keratinocytes as determined by Western immunoblot and mass spectrometry analyses, a finding replicated in HeLa, HEK293T, and HaCaT cells and in murine epidermis. Ceramide binding activity was decreased in recombinant CERT proteins containing the UVB-induced homotrimer. The middle region domain of the CERT protein was required for the homotrimer formation, whereas neither the pleckstrin homology (Golgi-binding) nor the START (ceramide-binding) domains were involved. Finally like UVB-treated keratinocytes, HPA-12 blockade of CERT function increased keratinocyte apoptosis, decreased sphingomyelin synthesis, and led to accumulation of ceramide. Thus, UVB-induced CERT homotrimer formation accounts, at least in part, for apoptosis and failed up-regulation of sphingomyelin synthesis following UVB irradiation, revealing that inactive CERT can attenuate a key metabolic protective mechanism against ceramide-induced apoptosis in keratinocytes.  相似文献   

4.
Epidermal differentiation results in the formation of the extracellular lipid barrier in the stratum corneum, which mainly consists of ceramides, free fatty acids, and cholesterol. Differentiating keratinocytes of the stratum granulosum synthesize a series of complex long-chain ceramides and glucosylceramides with different chain lengths and hydroxylation patterns at intracellular membranes of the secretory pathway. Formation of complex extracellular ceramides parallels the transition of keratinocytes from the stratum granulosum to the stratum corneum, where their precursors, complex glucosylceramides and sphingomyelin, are secreted and exposed to extracellular lysosomal lipid hydrolases. Submerged cultures used so far showed a reduced ceramide content compared to the native epidermis or the air-exposed, organotypic culture system. In order to investigate the sphingolipid metabolism during keratinocyte differentiation, we optimized a simple cell culture system to generate the major barrier sphingolipids. This optimized model is based on the chemically well-defined serum-free MCDB medium. At low calcium ion concentrations (0.1mM), keratinocytes proliferate and synthesize mainly Cer(NS) and a small amount of Cer(NP). Supplementation of the MCDB cell culture medium with calcium ions (1.1mM) and 10 microM linoleic acid triggered differentiation of keratinocytes and synthesis of a complex pattern of free and covalently bound ceramides as found in native epidermis or air-exposed organotypic cultures, though at a reduced level. The mRNA levels of the differentiation markers keratin 10 and profilaggrin increased, as well as those of ceramide glucosyltransferase and glucosylceramide-beta-glucosidase. The described culture system was thus suitable for biochemical studies of the sphingolipid metabolism during keratinocyte differentiation. The addition of serum or vitamin A to the medium resulted in a decrease in ceramide and glucosylceramide content. Lowering the medium pH to 6, while maintained cell viability, led to an increase in the processing of probarrier lipids glucosylceramide and sphingomyelin to free ceramides and protein-bound ceramide Cer(OS).  相似文献   

5.
Doxorubicin and camptothecin are two cytotoxic chemotherapeutic agents triggering apoptosis in various cancer cells, including thyroid carcinoma cells. Recent studies revealed a critical role of ceramide in chemotherapy and suggested that anti-cancer drugs may kill tumor cells through sphingomyelinase activation. However, in comparison to sphingomyelin hydrolysis, the relative involvement of de novo ceramide synthesis remained poorly explored and highly controversial. Here, we evidenced that both doxorubicin and camptothecin triggered ceramide accumulation in thyroid carcinoma cells. We demonstrated that ceramide increase occurred via the de novo pathway without neither acidic nor neutral sphingomyelinase contribution. Interestingly, de novo ceramide generation was responsible for the drug-induced malignant cell apoptosis through a caspase-3-dependent pathway and a decrease of thrombospondin amount. Furthermore, blocking ceramide metabolism by inhibiting glucosylceramide synthase strengthened the camptothecin and doxorubicin-dependent effects. Altogether, we evidenced that de novo ceramide synthesis mediates the anti-tumor properties of doxorubicin and camptothecin in thyroid carcinoma and suggested that glucosylation of ceramide may contribute to the drug-resistance phenotype in thyroid malignancies.  相似文献   

6.
Enzymatic production of ceramide from sphingomyelin   总被引:1,自引:0,他引:1  
Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potentials in cosmetic and pharmaceutical industries such as in hair and skin care products. Chemical synthesis of ceramide is a costly process, and developments of alternative cost-efficient production methods are of great interest. Present study was the first attempt to perform a systematic study on the production of ceramide through enzymatic hydrolysis of sphingomyelin. Sphingomyelin hydrolysis proved to be more efficient in two-phase (water:organic solvent) system than in one-phase (water-saturated organic solvent) system. Among the screened phospholipase C, the Clostridium perfringens enzyme had the highest sphingomyelin conversion rate, with very small temperature dependence. Addition of ethanol to the system markedly enhanced the rate of ceramide formation, and a mixture of ethylacetate:hexane (50:50) was the best organic solvent tested. Other factors such as (NH(4))(2)SO(4), NaCl and CaCl(2) were also tested but excluded for further consideration. On the basis of the initial experiments, the reaction system was optimized using response surface methodology including five factors (enzyme amount, water amount, ethanol amount, reaction time and the hexane ratio of organic solvent). Water content and enzyme amount was shown to have the most significant influence on the hydrolysis reaction in the fitted quadratic model. The efficiency of sphingomyelin hydrolysis was dramatically improved through system evaluation and optimization, with the optimal conditions at 75 min reaction time, 3 Uml(-1) enzyme amount, 6% water amount, 1.8% ethanol amount and 46% hexane in ethylacetate.  相似文献   

7.
During formation of the intercellular membranes of mammalian stratum corneum, sphingomyelin and glucosylceramide are converted enzymatically to ceramide. To model in isolation the possible effect of such a lipid modification on the phase behavior of the ensemble, we used proton and deuterium nuclear magnetic resonance to compare an equimolar dispersion of bovine brain sphingomyelin, cholesterol, and perdeuterated palmitic acid (at pH 6.2), with an equivalent dispersion in which bovine brain ceramide was substituted for sphingomyelin. While the sphingomyelin dispersions remain in a homogeneous fluid lamellar phase from 20-75 degrees C under these conditions, those containing ceramide display complex polymorphism.  相似文献   

8.
Intact brain and brain homogenates readily form free fatty acids and ceramides, even in the cold during subcellular isolation procedures. The fatty acid formation is slightly stimulated by chelators and might be due to phospholipid hydrolysis by lysosomal phospholipases. The ceramide formation is accompanied by loss of sphingomyelin and is apparently due to the action of neutral, metal ion-activated sphingomyelinase. The latter reaction is inhibited by EDTA whereas both degradative processes are inhibited by mercuriphenylsulfonate, the thiol-reacting inhibitor. Cerebroside does not seem to be a source of accumulated ceramide.  相似文献   

9.
The topology of ceramide glucosyltransferase and de novo synthesized glucosylceramide was studied in sealed and 'right-side-out' vesicles of porcine submaxillary glands derived from Golgi apparatus. Pronase treatment which did not cause any breakdown of the luminal glycoprotein galactosyltransferase activity, inhibited the ceramide glucosyltransferase to more than 50% at a ratio proteinase to Golgi protein 1:100. Trypsin at the same concentration, while producing no inactivation of luminal galactosyltransferase, caused a complete loss of ceramide glucosyltransferase activity. The membrane-impermeable compound, DIDS, which did not cause any inhibition of the galactosyltransferase, inhibited the ceramide glucosyltransferase (70% reduction at 80 microM DIDS). Thus, the enzyme ceramide glucosyltransferase is accessible from the cytoplasmic side of the Golgi vesicles. The orientation of the newly synthesized glucosylceramide is studied by the ability of the enzyme glucosylceramidase to hydrolyse this compound both on intact and on disrupted vesicles. The same percentage (respectively, 36 and 30%) of hydrolysis was obtained during an incubation of 3 h, showing that glucosylceramide is not at all protected from external hydrolysis. Pronase-treated vesicles revealed an increase in glucosylceramidase hydrolysis (up to 45%), which indicates that glucosylceramide that glucosylceramide may be cryptic. All these results indicate that the ceramide glucosyltransferase, as well as related glucosylceramide, are cytoplasmically oriented in Golgi vesicles from porcine submaxillary glands.  相似文献   

10.
To clarify the functional relevance of sphingomyelin (SM) deacylase to the ceramide deficiency seen in atopic dermatitis (AD), we developed a new highly sensitive method and measured the metabolic intermediate sphingosylphosphorylcholine (SPC) that accumulates in the stratum corneum. SPC in intercellular lipids extracted from stratum corneum was reacted with [(14)C]acetic anhydride to yield [(14)C-C(2)]SM, which was then analyzed by TLC. In both the lesional and non-lesional stratum corneum obtained from patients with AD, there was a significant increase in the content of SPC over that of healthy control subjects. There was a reciprocal relationship between increases in SPC and decreases in ceramide levels of stratum corneum obtained from healthy controls, and from lesional and non-lesional skin from patients with AD. Comparison with other sphingolipids present in the stratum corneum demonstrated that there is a significant positive correlation between SPC and glucosylsphingosine, another lysosphingolipid derived from glucosylceramide by another novel epidermal enzyme, termed glucosylceramide deacylase. In contrast, there was no correlation between SPC and sphingosine, a degradative product generated from ceramide by ceramidase. These findings strongly suggest the physiological relevance of SM deacylase function in vivo to the ceramide deficiency found in the skin of patients with AD.  相似文献   

11.
Most anti-cancer agents induce apoptosis, however, a development of multidrug resistance in cancer cells and defects in apoptosis contribute often to treatment failure. Here, the mechanism of curcumin-induced apoptosis was investigated in human leukemia HL60 cells and their HL60/VCR multidrug-resistant counterparts. In both cell lines curcumin induced a bi-phasic ceramide generation with a slow phase until 6 h followed by a more rapid one. The level of the ceramide accumulation correlated inversely with the cell viability. We found that the ceramide elevation resulted from multifarious changes of the activity of sphingolipid-modifying enzymes. In both cell lines curcumin induced relatively fast activation of neutral sphingomyelinase (nSMase), which peaked at 3 h, and was followed by inhibition of sphingomyelin synthase activity. In addition, in HL60/VCR cells the glucosylceramide synthase activity was diminished by curcumin. This process was probably due to curcumin-induced down-regulation of P-gp drug transporter, since cyclosporine A, a P-gp blocker, also inhibited the glucosylceramide synthase activity. Inhibition of nSMase activity with GW4869 or silencing of SMPD3 gene encoding nSMase2 reversed the curcumin-induced inhibition of sphingomyelin synthase without affecting the glucosylceramide synthase activity. The early ceramide generation by nSMase was indispensable for the later lipid accumulation, modulation of Bax, Bcl-2 and caspase 3 levels, and for reduction of cell viability in curcumin-treated cells, as all these events were inhibited by GW4869 or nSMase2 depletion. These data indicate that the early ceramide generation by nSMase2 induced by curcumin intensifies the later ceramide accumulation via inhibition of sphingomyelin synthase, and controls pro-apoptotic signaling.  相似文献   

12.
Ceramide kinase (CERK) produces the bioactive lipid ceramide 1-phosphate (C1P) and is, together with glucosylceramide synthase (GCS) and sphingomyelin synthases (SMS-1 and -2), a key regulator of ceramide metabolism. Here, we used a previously validated assay for measuring CERK, GCS, and SMS activities simultaneously, to study the regulation of ceramide metabolism in mouse macrophages. Elicitation of peritoneal macrophages as well as differentiation of bone marrow-derived monocytes into macrophages led to “ceramide anabolic switching” by re-directing ceramide anabolism towards C1P synthesis by CERK. In contrast, macrophage activation by lipopolysaccharide (LPS) evoked a “ceramide anabolic switch” going in the opposite direction, i.e. featuring up-regulation of GCS and SMS and down-regulation of CERK. The LPS effects were partially blocked by dexamethasone, a known macrophage de-activator. Altogether, the data reveal a contrasting regulation of ceramide metabolism enzymes during macrophage biological responses.  相似文献   

13.
The ceramide turnover by lysosomal ceramidase in intact, living cells was investigated by loading radiolabeled sulfatide or sphingomyelin in situ on skin fibroblasts and lymphoid cells. The cells originated from normal individuals and from patients with acid ceramidase deficiency (Farber disease). While fibroblasts from individuals with Farber disease exhibited some impairment in the degradation of the ceramide produced by sulfatide hydrolysis, lymphoid cells from individuals with Farber disease metabolized the ceramide as readily as did normal cells, suggesting the existence in lymphoid cells of a nonlysosomal degradation pathway for the sulfatide-derived ceramide, In contrast, sphingomyelin loading in the presence of serum showed a considerably decreased turnover of ceramide in both fibroblasts and lymphoid cells from individuals with Farber disease. Further methodologic variation led to the use of LDL-associated radioactive sphingomyelin; LDL-association promoted the targeting of exogenous sphingomyelin to lysosomes. As a result, an almost complete deficiency of ceramide degradation was found in cells from severely affected patients with Farber disease. Our data with this novel method show that sphingomyelin loading of intact living cells is a simple, alternative means for determining ceramide degradation by lysosomal ceramidase and for diagnosing Farber disease.  相似文献   

14.
In our attempt to assess the topology of glucosylceramide biosynthesis, we have employed a truncated ceramide analogue that permeates cell membranes and is converted into water soluble sphingolipid analogues both in living and in fractionated cells. Truncated sphingomyelin is synthesized in the lumen of the Golgi, whereas glucosylceramide is synthesized at the cytosolic surface of the Golgi as shown by (a) the insensitivity of truncated sphingomyelin synthesis and the sensitivity of truncated glucosylceramide synthesis in intact Golgi membranes from rabbit liver to treatment with protease or the chemical reagent DIDS; and (b) sensitivity of truncated sphingomyelin export and insensitivity of truncated glucosylceramide export to decreased temperature and the presence of GTP-gamma-S in semiintact CHO cells. Moreover, subfractionation of rat liver Golgi demonstrated that the sphingomyelin synthase activity was restricted to fractions containing marker enzymes for the proximal Golgi, whereas the capacity to synthesize truncated glucosylceramide was also found in fractions containing distal Golgi markers. A similar distribution of glucosylceramide synthesizing activity was observed in the Golgi of the human liver derived HepG2 cells. The cytosolic orientation of the reaction in HepG2 cells was confirmed by complete extractability of newly formed NBD-glucosylceramide from isolated Golgi membranes or semiintact cells by serum albumin, whereas NBD-sphingomyelin remained protected against such extraction.  相似文献   

15.
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

16.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

17.
Uropathogenic Escherichia coli attach to epithelial cells through P fimbriae that bind Galα1-4Galβ-oligosaccharide sequences in cell surface glycosphingolipids. The binding of P-fimbriated E. coli to uroepithelial cells causes the release of ceramide, activation of the ceramide signalling pathway and a cytokine response in the epithelial cells. The present study examined the molecular source of ceramide in human kidney A498 cells exposed to P-fimbriated E. coli . Agonists such as TNF-α and IL-1β released ceramide from sphingomyelin by the activation of endogenous sphingomyelinases and hydrolysis of sphingomyelin, and triggered an IL-6 response. P-fimbriated E. coli caused a slight increase in endogenous sphingomyelinase activity, but there was no associated sphingomyelin hydrolysis. Instead, the concentration of galactose-containing glycolipids decreased. We propose that P-fimbriated E. coli differ from other activators of the ceramide pathway, in that release of ceramide is from receptor glycolipids and not from sphingomyelin. Receptor breakdown may be an efficient host defence strategy, as it reduces the concentration of cell surface receptors, releases soluble receptor analogues and activates an inflammatory response.  相似文献   

18.
We report here the expression of a bacterial sphingomyelinase in mammalian cells as a functionally active form. A chimeric Pseudomonas sphingomyelinase fused with the lysosomal sorting motif of lysosomal acid phosphatase was sorted to lysosomes in mammalian cells. As expected, the chimeric SMase hydrolyzed sphingomyelin in vivo to produce ceramide, part of which was converted to glucosylceramide.  相似文献   

19.
Kinetic study of sphingomyelin hydrolysis catalyzed by Clostridium perfringens phospholipase C was, at the first time, conducted for ceramide production. Ceramide has the major role in maintaining the water-retaining properties of the epidermis. Hence, it is of great commercial potential in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system was investigated to elucidate the possible reaction mechanism and also to further improve the hydrolysis performance. Enzyme in solution had less thermal stability than the enzyme powder and the immobilized enzyme. The thermal inactivation of phospholipase C in all the three forms did not follow the first order reaction at 65 °C. The reactions for both the soluble and immobilized enzymes followed Michaelis–Menten kinetics. Km's for the soluble and immobilized enzymes were 1.07 ± 0.32 and 1.26 ± 0.19 mM, respectively. The value of Vmax was markedly decreased by the immobilization without much change in Km, as if the immobilization functioned as the non-competitive inhibition. Ceramide as product activated the hydrolysis reaction, however, and its addition mainly caused the increase in the affinity of the enzyme–substrate complex.  相似文献   

20.
Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D ‐ceramide‐C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D ‐ceramide‐C6‐treated HeLa cells revealed an increase in the levels of C6‐sphingomyelin, C6‐glucosylceramide, and diacylglycerol. D ‐ceramide‐C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D ‐ceramide‐C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6‐sphingomyelin prevented liquid‐ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号