首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L E Ling  M M Manos    Y Gluzman 《Nucleic acids research》1982,10(24):8099-8112
The nucleotide sequences of six Ad2-SV40 junctions from three Ad2-SV40 hybrid viruses (Ad2++HEY, Ad2++LEY and Ad2+D1) were determined. Comparison of parental adenovirus 2 and SV40 DNA sequences with the sequence at the Ad2-SV40 junctions revealed that 5 out of 6 junctions are abrupt transitions from Ad2 to SV40 DNA, and in one case (Ad2++LEY, right junction) there is an additional nucleotide at the junction, which cannot be ascribed to either DNA. Ad2++HEY and Ad2+D1 right junctions are identical and Ad2++LEY and Ad2+ND4 left junctions are identical, a result that strongly suggests these Ad2-SV40 hybrids arose by recombination between the linear Ad2 DNA and circular SV40 DNA, followed by recombination between Ad2 DNA and SV40 DNA present in the Ad2-SV40 hybrid DNA. The unambiguous transition of Ad2 DNA into SV40 DNA at the junction sites is an example of recombination events which have apparently occurred without any homology at the recombination site.  相似文献   

2.
3.
The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2(++) HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2(++) HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules.  相似文献   

4.
The ribonucleic acid-deoxyribonucleic acid hybridization technique was utilized to determine the presence of adenovirus (ad) and SV40 genetic information and to determine which ad genomes were present in clones of hamster cells transformed with the ad 2-SV40 and ad 12-SV40 transcapsidant hybrid virus populations. The results were correlated with the morphology of the transformed cells and colonies. It was found that cells transformed by either transcapsidant virus which had an SV40 morphology contained the ad 7 and SV40 genomes, whereas cells with a typical ad morphology contained only ad genetic information. Cells and colonies with morphological features of both ad- and SV40-transformed cells contained either the ad 2, or ad 12 genomes, depending on the transcapsidant used, together with the ad 7 and SV40 genomes. The results indicate the following: at least three different events occurred during transformation of hamster cells by the transcapsidant virus populations; the morphology of the resulting clones is determined by the viral genome(s) present; the linkage of the ad 7-SV40 genomes is confirmed since the ad 7- SV40 genomes were never found to be dissociated; the defective ad 7-SV40 genomes are capable of causing transformation; and the transcapsidant particle is probably composed of only ad 7 and SV40 genetic information.  相似文献   

5.
The Ad2++hey hybrid virus population produces simian virus 40 (SV40) efficiently during lytic infection, whereas Ad2++ley does not, although both hybrids contain a complete SV40 genome. In this report, we demonstrate the synthesis of nonhydrid SV40 DNA in Ad2++HEY-infected Vero cells, but only early SV40 RNA is transcribed efficiently in Ad2++LEY-infected cells. Ad2++HEY induces SV40 U, T, and V antigens during lytic infection of African green monkey kidney cells, whereas Ad2++LEY induces only SV40 U and T antigens. These variations in the behavior of Ad2++HEY and Ad2++LEY regarding expression of SV40 functions probably reflect differences in the rate of SV40 excision from the hybrid genomes.  相似文献   

6.
The simian virus 40 (SV40)-yielding variants of the adenovirus type 2 (Ad.2)-SV40 hybrid (Ad.2(++)) population were studied by means of fixed-angle equilibrium density gradient centrifugation in cesium chloride. The hybrid virions of the Ad.2(++) high-efficiency yielder population banded at densities of 0.004 g/cm(3) lighter than the nonhybrid Ad.2 virions. The degree of separation of the hybrid particles was sufficient to permit greater than 100-fold relative purification by two cycles of centrifugation. Hybrid particles that produce adenovirus plaques in African green monkey kidney cells by two-hit kinetics (one-hit kinetics when assayed on lawns of nonhybrid adenovirus) were not separable from the particles that yield SV40 virus. The hybrid particle in the Ad.2(++) low-efficiency yielder population was not separable from the nonhybrid Ad.2 virions.  相似文献   

7.
A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2(+)ND(1) virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2(+)ND(1) molecule. From the results obtained, it was estimated that 1% of the Ad2(+)ND(1) DNA consists of SV40 nucleotide sequences.  相似文献   

8.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

9.
Characterization of the simian adenovirus type 30 inverted terminal repeat   总被引:1,自引:0,他引:1  
  相似文献   

10.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

11.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

12.
Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), and Ad2(+)ND(5)) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2(+)ND(1), in their biological properties or in the amount of SV40-specific RNA induced during lytic infection.Like Ad2(+)ND(1), Ad2(+)ND(2), and Ad2(+)ND(4) pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2(+)ND(3) and Ad2(+)ND(5) pass serially only in HEK cells. Ad2(+)ND(2) is like Ad2(+)ND(1) in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2(+)ND(1), the SV40 antigen induced by Ad2(+)ND(2) is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2(+)ND(4) induces both the SV40 T and U antigens. Ad2(+)ND(3) and Ad2(+)ND(5) do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses.  相似文献   

13.
E May  J M Jeltsch    F Gannon 《Nucleic acids research》1981,9(16):4111-4128
It has been reported that SV40-transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) produce a super T antigen of 115,000 M. This super T antigen is entirely SV40 coded and is synthesized by translation of an elongated form of SV40 early mRNA (May, E., Kress, M. Daya-Grosjean, L., Monier, R. and May, P. (1981) J. Virol., 37, 24-35). The results reported here show that there is only one independent insertion of viral DNA in the cellular genome of subclone 7 cells. When DNA from subclone 7 cells was cleaved with Bam HI endonuclease two distinct SV40 sequence containing fragments were generated with sizes of 5 Kb and 10 Kb, respectively. Two recombinant cosmids were constructed by insertion of the 5 Kb and 10 Kb fragments, respectively, into cosmid pHC 79. Using restriction map analysis and nucleotide sequencing, we showed that the 5 Kb fragment actually contained the complete sequence of a gene encoding super T antigen. As compared to the normal SV40 early gene, the sequence of super T gene showed the following rearrangements: (i) The segment between nucleotides 4116 - 3544 was duplicated in a direct order and (ii) these two copies of 573 nucleotide sequence were separated by a 93 nucleotide tract which was a nearly perfect inverted repeat of the segment located between nucleotides 4868 and 4776 (nucleotide numbering used here = Weissmann number +17).  相似文献   

14.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

15.
A series of viable recombinants between adenovirus 2 (Ad2) and simian virus 40 (SV40) (nondefective Ad2-SV40 hybrids) have been isolated. The members of this series (designated Ad2(+)ND(1) through Ad2(+)ND(5)) differ from one another in the early SV40-specific antigens and the SV40-specific RNA species which they induce in infected cells. They also contain different amounts of SV40 DNA as shown by RNA-DNA hybridization techniques. We have examined the structure of the DNA molecules from these hybrids, using electron microscope heteroduplex mapping techniques. Each hybrid was found to contain a single segment of SV40 DNA of characteristic size covalently inserted at a unique location in the adenovirus 2 DNA molecule. The SV40 segments of the various hybrids formed an overlapping series with a common end point. When the results of the electron microscopic study were combined with data on antigen induction, it was found that a self-consistent map could be constructed which related specific regions of the SV40 genome to the induction of specific antigens. The order of these early SV40 antigen inducing regions in the SV40 DNA segments contained in the nondefective hybrids is: U antigen, tumor specific transplantation antigen, and T antigen with the U antigen region being nearest the common end point.  相似文献   

16.
Ad2++ HEY and Ad2++ LEY are two adenovirus 2(Ad2)-simian virus 40 (SV40) hybrids distinguished by differences in the efficiency with which they produce SV40 progeny in lytically infected African green monkey kidney cells. These virus populations are composed of nonhybrid Ad2 and hybrid virions, the majority of which contain more than 1 unit of SV40 DNA. The Ad2++ HEY and LEY populations also differ in their ability to induce SV40 transplantation immunity in rodents. Only Ad2++ HEY induces SV40 transplantation immunity in hamsters, whereas both viruses induce significant SV40 transplantation immunity in adult BALB/c mice.  相似文献   

17.
Mapping of Simian Virus 40 Early Functions on the Viral Chromosome   总被引:40,自引:35,他引:5       下载免费PDF全文
The simian virus 40 (SV40) DNA segment in the nondefective adenovirus 2-SV40 hybrid, Ad2(+)ND(4), is colinear with the segment between 0.11 and 0.59 SV40 fractional length from the site at which the R(1) restriction endonuclease cleaves SV40 DNA. This specifies the region of the SV40 DNA molecule which induces the early SV40 antigens: U antigen, tumor specific transplantation antigen, and T antigen. A variant of Ad2(+)ND(4), called Ad2(+)ND(4del), was found which has a deletion of the DNA segment between 0.50 and 0.57 SV40 fractional length from the R(1) endonuclease cleavage point.  相似文献   

18.
N D Stow 《Nucleic acids research》1982,10(17):5105-5119
Deletions extending various distances into the left-hand terminal DNA sequences of the adenovirus type 2 (Ad2) genome were generated in a plasmid containing a cloned fragment spanning from 0 to 4.9 map units. The altered Ad2 DNA sequences were introduced into viral genomes by ligating a plasmid-derived fragment, which included the sequences extending to 3.8 map units, to the 3.8-100 map unit fragment generated by XbaI cleavage of the DNA of the Ad5 variant, d1309 (N.Jones and T.Shenk, Cell 17 683-689, 1979). The infectivity of the ligation products was studied by transfection of line 293 cells. Genomes lacking 11, 40, or 51 nucleotides from their left-hand termini, or containing an additional 18dG residues linked to this position were infectious, and analysis of the progeny virus genomes demonstrated that the structure of these modified termini had been restored to normal. In contrast, genomes from which the first 160 base pairs (bp), including the entire 102 bp left hand inverted terminal repeat (ITR), had been removed were non-infectious. The results indicate that the ITRs present at the opposite ends of transfecting DNA molecules are able to interact in vivo, and enable the production of viable viruses containing corrected left-hand terminal sequences. Possible mechanisms for this interaction are discussed.  相似文献   

19.
Direct or inverse repeated sequences are important functional features of prokaryotic and eukaryotic genomes. Considering the unique mechanism, involving single-stranded genomic intermediates, by which adenovirus (Ad) replicates its genome, we investigated whether repetitive homologous sequences inserted into E1-deleted adenoviral vectors would affect replication of viral DNA. In these studies we found that inverted repeats (IRs) inserted into the E1 region could mediate predictable genomic rearrangements, resulting in vector genomes devoid of all viral genes. These genomes (termed DeltaAd.IR) contained only the transgene cassette flanked on both sides by precisely duplicated IRs, Ad packaging signals, and Ad inverted terminal repeat sequences. Generation of DeltaAd.IR genomes could also be achieved by coinfecting two viruses, each providing one inverse homology element. The formation of DeltaAd.IR genomes required Ad DNA replication and appeared to involve recombination between the homologous inverted sequences. The formation of DeltaAd. IR genomes did not depend on the sequence within or adjacent to the inverted repeat elements. The small DeltaAd.IR vector genomes were efficiently packaged into functional Ad particles. All functions for DeltaAd.IR replication and packaging were provided by the full-length genome amplified in the same cell. DeltaAd.IR vectors were produced at a yield of approximately 10(4) particles per cell, which could be separated from virions with full-length genomes based on their lighter buoyant density. DeltaAd.IR vectors infected cultured cells with the same efficiency as first-generation vectors; however, transgene expression was only transient due to the instability of deleted genomes within transduced cells. The finding that IRs present within Ad vector genomes can mediate precise genetic rearrangements has important implications for the development of new vectors for gene therapy approaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号