首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of regeneration is most readily studied in species of sponge, hydra, planarian, and salamander (i.e., newt and axolotl). The closure of MRL mouse ear pinna through-and-through holes provides a model of unusual wound healing/regeneration in which a blastema-like structure closes the ear hole and cartilage and hair follicles are replaced. Recent studies, based on a broad level of DNA damage and a cell cycle pattern of G2/M "arrest," showed that p21Cip1/Waf1 was missing from the MRL mouse ear and that a p21-null mouse could close its ear holes. Given the p53/p21 axis of control of DNA damage, cell cycle arrest, apoptosis, and senescence, we tested the role of p53 in the ear hole regenerative response. Using backcross mice, we found that loss of p53 in MRL mice did not show reduced healing. Furthermore, cross sections of MRL.p53-/- mouse ears at 6 weeks post-injury showed an increased level of adipocytes and chondrocytes in the region of healing whereas MRL or p21-/- mice show chondrogenesis alone in this same region, though at later time points. In addition, we also investigated other cell cycle-related mutant mice to determine how p21 was being regulated. We demonstrate that p16 and Gadd45 null mice show little healing capacity. Interestingly, a partial healing phenotype in mice with a dual Tgfb/Rag2 knockout mutation was seen. These data demonstrate an independence of p53 signaling for mouse appendage regeneration and suggest that the role of p21 in this process is possibly through the abrogation of the Tgfb/Smad pathway.  相似文献   

2.
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.  相似文献   

3.
We previously demonstrated that after a severe cryoinjury to the right ventricle of the heart, adult MRL mice display structural and functional recovery with myocardial tissue replacement resembling that seen in amphibians. The control non-regenerating adult C57BL/6 (B6) mouse shows a predominant scar response. In the present study, radiation chimeras reconstituted with fetal liver cells from either healer MRL or nonhealer B6 mice were generated to test for a transfer of phenotype. Allogeneic MRL fetal liver cells were injected into x-irradiated (9 Gy) B6 mice and B6 fetal liver cells were injected into x-irradiated MRL mice. In these allogeneic chimeras, the healing response to cardiac cryoinjury was predominantly of the donor phenotype. Thus, MRL fetal liver cells transferred the healing phenotype to the B6 nonhealer with the appearance of Y-chromosome positive, donor-derived cardiomyocytes in the injury site and MRL-like healing with little scar. Similarly, B6 fetal liver cells transferred the nonhealing phenotype to the MRL with little cardiomyocyte growth and an acellular B6-like scar. These results are in contrast to the ear hole closure response which was of the recipient phenotype. We conclude that, in the case of the heart, fetal liver-derived stem cells regulate regenerative healing.  相似文献   

4.
The process of regeneration is most readily studied in species of sponge, hydra, planarian and salamander (i.e., newt and axolotl). The closure of MRL mouse ear pinna through-and-through holes provides a mammalian model of unusual wound healing/regeneration in which a blastema-like structure closes the ear hole and cartilage and hair follicles are replaced. Recent studies, based on a broad level of DNA damage and a cell cycle pattern of G2/M “arrest,” showed that p21Cip1/Waf1 was missing from the MRL mouse ear and that a p21-null mouse could close its ear holes. Given the p53/p21 axis of control of DNA damage, cell cycle arrest, apoptosis and senescence, we tested the role of p53 in the ear hole regenerative response. Using backcross mice, we found that loss of p53 in MRL mice did not show reduced healing. Furthermore, cross sections of MRL. p53−/− mouse ears at 6 weeks post-injury showed an increased level of adipocytes and chondrocytes in the region of healing whereas MRL or p21−/− mice showed chondrogenesis alone in this same region, though at later time points. In addition, we also investigated other cell cyclerelated mutant mice to determine how p21 was being regulated. We demonstrate that p16 and Gadd45 null mice show little healing capacity. Interestingly, a partial healing phenotype in mice with a dual Tgfβ/Rag2 knockout mutation was seen. These data demonstrate an independence of p53 signaling for mouse appendage regeneration and suggest that the role of p21 in this process is possibly through the abrogation of the Tgfβ/Smad pathway.Key words: mouse, regeneration, p53, p21, MRL, ear-hole, Tgfβ  相似文献   

5.
6.

Background

Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ) “super-healer” mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant.

Methodology

The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ “super-healer” mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints.

Principal Findings

Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair.

Conclusion and Significance

The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.  相似文献   

7.
Most adult mammals heal without restorative replacement of lost tissue and instead form scar tissue at an injury site. One exception is the adult MRL/MpJ mouse that can regenerate ear and cardiac tissue after wounding with little evidence of scar tissue formation. Following production of a MRL mouse ear hole, 2 mm in diameter, a structure rapidly forms at the injury site that resembles the amphibian blastema at a limb amputation site during limb regeneration. We have isolated MRL blastemal cells (MRL-B) from this structure and adapted them to culture. We demonstrate by RT-PCR that even after continuous culturing of these cells they maintain expression of several progenitor cell markers, including DLK (Pref-1), and Msx-1. We have isolated the underlying extracellular matrix (ECM) produced by these MRL-B cells using a new non-proteolytic method and studied the biological activities of this cell-free ECM. Multiplex microELISA analysis of MRL-B cell-free ECM vs. cells revealed selective enrichment of growth factors such as bFGF, HGF and KGF in the matrix compartment. The cell-free ECM, degraded by mild enzyme treatment, was active in promoting migration and proliferation of progenitor cells in vitro and accelerating wound closure in a mouse full thickness cutaneous wound assay in vivo. In vivo, a single application of MRL-B cell matrix-derived products to full thickness cutaneous wounds in non-regenerative mice, B6, induced re-growth of pigmented hair, dermis and epidermis at the wound site whereas scar tissue replaced these tissues at wound sites in mice treated with vehicle alone. These studies suggest that matrix-derived products can stimulate regenerative healing and avert scar tissue formation in adult mammals.  相似文献   

8.
Tissue regeneration and scarless healing involves the complete replacement and functional restoration of damaged organs and tissues. In this study of the scarless healing MRL mouse model, we demonstrate that 2-mm diameter through-and-through holes made in the cartilaginous part of previously injured MRL mouse ears are closed more efficiently, and that the regenerative repair response is significantly accelerated compared with unprimed MRL and control nonhealer strains of mice. Accelerated healing was detected both locally and distally from the original site of injury indicating the involvement of systemic components such as circulating cell types or soluble factors. Histologically, we observed early differences during the wound repair process (before Day 4 post injury) with accelerated formation of blastema-like structures, epidermal downgrowths, and enhanced epithelium thickening in wound border zones in primed MRL mice versus unprimed MRL mice. Although the mechanism of tissue regeneration remains unclear, the results from this study justify the use of the MRL model for further experimentation directed toward the identification of proteins and cell types capable of stimulating scarless tissue regeneration.The views presented in this paper are those of the authors.  相似文献   

9.
Systemic lupus erythematosus (SLE) is an autoimmune disease involving inappropriate inflammatory responses in a wide range of organs. The recruitment of leucocytes to these sites of inflammation is one of the key events in the development of tissue injury in SLE. However, the mechanisms responsible for this aberrant recruitment are poorly understood. Several studies have demonstrated upregulation of endothelial adhesion molecule expression in tissue biopsies from SLE patients. However, the progression to analysis of the functional roles of these adhesion molecules has entailed the use of animal models of SLE. Much of this work has involved the use of the MRL/faslpr mouse model of systemic autoimmune disease. This mouse develops a systemic inflammatory disease with similarities to human SLE. This review summarizes work by our laboratory and others which have examined alterations in the mechanisms of leucocyte trafficking in the MRL/faslpr mouse. These experiments have revealed upregulation of key adhesion molecules, alterations in leucocyte-endothelial cell interactions and in some cases protective effects of deletion of endothelial adhesion molecules. From analysis of a range of microvasculatures in the MRL/faslpr mouse, it is becoming clear that the roles of specific adhesion molecules vary according to the tissue under analysis. Furthermore, analysis of MRL/faslpr mice with targeted deletions of specific adhesion molecules indicates that their roles in development and progression of disease can vary from having key contributions to the development of disease, to attenuating disease via as yet unidentified mechanisms.  相似文献   

10.
Native myocardium has limited regenerative potential post injury. Advances in lineage reprogramming have provided promising cellular sources for regenerative medicine in addition to research applications. Recently we have shown that adult mouse fibroblasts can be reprogrammed to expandable, multipotent, induced cardiac progenitor cells (iCPCs) by employing forced expression of five cardiac factors along with activation of canonical Wnt and JAK/STAT signaling. Here we aim to further characterize iCPCs by highlighting their safety, ease of attainability, and functionality within a three-dimensional cardiac extracellular matrix scaffold. Specifically, iCPCs did not form teratomas in contrast to embryonic stem cells when injected into immunodeficient mice. iCPC reprogramming was achieved in wild type mouse fibroblasts without requiring a cardiac-specific reporter, solely utilizing morphological changes to identify, clonally isolate, and expand iCPCs, thus increasing the versatility of this technology. iCPCs also show the ability to repopulate decellularized native heart scaffolds and differentiated into organized structures containing cardiomyocytes, smooth muscle, and endothelial cells. Optical mapping of recellularized scaffolds shows field-stimulated calcium transients that propagate across islands of reconstituted tissue and bipolar local stimulation demonstrates cell-cell coupling within scaffolds. Overall, iCPCs provide a readily attainable, scalable, safe, and functional cell source for a variety of application including drug discovery, disease modeling, and regenerative therapy.  相似文献   

11.
Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.  相似文献   

12.
Explaining the high variability of regenerative ability across metazoan taxa is one of the major challenges in modern biology. Although common and widespread, regeneration shows a heterogeneous distribution and most authors consider regeneration capacity to be an ancestral trait that has been restricted or completely lost over the course of metazoan evolution. Basal Metazoans show the highest capacity for regeneration. By contrast, this feature is highly variable within bilaterians, with many taxa limited in their capacity for regeneration or not regenerating at all. The causes of the loss and/or maintenance of regeneration remain poorly understood, with most explanations invoking adaptive mechanisms. In the present study Metazoan regeneration is discussed with reference to stem cell biology, tissue plasticity, evolution of tissue complexity, cell turnover and lifespan. The presence or absence of regenerative ability cannot be seen only as an adaptation to a particular environment but can also be a consequence of body plan and developmental constraints such as may arise from the evolution of an adaptive immune system.  相似文献   

13.
Considerable evidence supports the idea that autoantibody production in human and murine SLE is Ag driven. To determine whether Ag (the ribosomal P proteins) could initiate autoantibody production in lupus mice, 34 MRL/lpr mice were immunized with mouse riboosomal proteins in Freund's adjuvant. Neither intact ribosomes, denatured total mouse ribosomal proteins, nor the purified mouse ribosomal proteins, P1 and P2, induced the production of anti-P autoantibodies in the MRL/lpr mice. In contrast to these negative findings, MRL/lpr mice immunized with Artemia salina ribosomes produced anti-P antibodies as well as anti-P autoantibodies. Although the induced anti-P autoantibodies bound exclusively to the carboxyl terminus, these anti-P antibodies differed from spontaneously occurring anti-P autoantibodies in their predominant binding to mouse P0 on immunoblots and their preferential reactivity against A. salina synthetic peptides by ELISA. Induction of anti-P antibodies required the presence of P1 and P2 on the ribosome because ribosomal cores devoid of P1 and P2 dimers did not induce anti-P. Despite the presence of approximately 80 ribosomal proteins, autoantibodies to other mouse ribosomal proteins were rarely observed. Immunization of MRL/+ mice and a normal H-2-matched strain of mice, C3H, also resulted in anti-P antibodies reactive with the A. salina P proteins and mouse P0. Whereas anti-P levels gradually declined in C3H mice, anti-P levels either remained elevated (MRL/lpr) or showed a secondary rise (MRL/+) at the onset of autoimmunity. These observations indicate that: i) high levels of autologous Ag are not sufficient to drive antiribosomal autoantibody production in MRL mice, ii) multivalency of the P proteins may explain their potent immunogenicity and ability to break tolerance, and iii) immunized MRL mice show an abnormal persistence of high level anti-P production presumably reflecting T cell activation of presensitized B cells.  相似文献   

14.
Aging in many animals is characterized by a failure to maintain tissue homeostasis and the loss of regenerative capacity. In this study, the ability to maintain tissue homeostasis and regenerative potential was investigated in sea urchins, a novel model to study longevity and negligible senescence. Sea urchins grow indeterminately, regenerate damaged appendages and reproduce throughout their lifespan and yet different species are reported to have very different life expectancies (ranging from 4 to more than 100 years). Quantitative analyses of cell proliferation and apoptosis indicated a low level of cell turnover in tissues of young and old sea urchins of species with different lifespans (Lytechinus variegatus, Strongylocentrotus purpuratus and Mesocentrotus franciscanus). The ability to regenerate damaged tissue was maintained with age as assessed by the regrowth of amputated spines and tube feet (motor and sensory appendages). Expression of genes involved in cell proliferation (pcna), telomere maintenance (tert) and multipotency (seawi and vasa) was maintained with age in somatic tissues. Immunolocalization of the Vasa protein to areas of the tube feet, spines, radial nerve, esophagus and a sub‐population of circulating coelomocytes suggests the presence of multipotent cells that may play a role in normal tissue homeostasis and the regenerative potential of external appendages. The results indicate that regenerative potential was maintained with age regardless of lifespan, contrary to the expectation that shorter lived species would invest less in maintenance and repair.  相似文献   

15.
To investigate the boundaries between regenerative and non-regenerative animals, we first survey regenerative ability across animal phyla from sponges to chordates (including mammals). There are both regenerative and non-regenerative animals in each phylum. The cells participating in regeneration also vary among different species. Thus, it is hard to find clear rules concerning regeneration ability across the animal kingdom, suggesting that it is not useful to compare the difference of regenerative ability across phyla to seek the boundary between regenerative and non-regenerative animals. Instead, if we carefully compare the differences of regenerative ability between closely related species within each phylum and accumulate these differences at the cellular molecular levels, we may be able to clarify the boundary between regenerative and non-regenerative animals. Here we introduce our comparative analysis of cellular events after amputation of lower jaws between frogs and newts. Then we propose that such comparative analyses using closely related species within the same phylum should be accumulated to understand the boundary between regenerative and non-regenerative animals in order to apply this understanding for realizing regenerative medicine in the future.  相似文献   

16.
Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.  相似文献   

17.
Wound healing in mammals can take several weeks to months and the process is always accompanied by scar formation. Wound healing mechanisms that mimic regeneration are not found in most mature mammalian tissues. However, the MRL/MPJ (MRL) mouse has the unique capacity to regenerate ear hole wound completely in less than a month. To identify genes involved in wound healing without a scar, we chose to use restriction fragment differential display-PCR to isolate genes differentially expressed in the MRL (good healer) mouse and the C57BL/6 (poor healer) mouse at different stages of wound healing. We identified 36 genes that were differentially expressed in the regenerating tissue of good and poor healer strains of which several genes are also genetically linked to wound healing and thus are potential candidate genes for scarless wound healing.  相似文献   

18.
Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.  相似文献   

19.
Mesenchymal stem cells (MSCs) are a multipotent cell population which has been described to exert renoprotective and regenerative effects in experimental models of kidney injury. Several lines of evidence indicate that MSCs also have the ability to contribute to nephrogenesis, suggesting that the cells can be employed in stem cell-based applications aimed at de novo renal tissue generation. In this study we re-evaluate the capacity of mouse and human bone marrow-derived MSCs to contribute to the development of renal tissue using a novel method of embryonic kidney culture. Although MSCs show expression of some genes involved in renal development, their contribution to nephrogenesis is very limited in comparison to other stem cell types tested. Furthermore, we found that both mouse and human MSCs have a detrimental effect on the ex vivo development of mouse embryonic kidney, this effect being mediated through a paracrine action. Stimulation with conditioned medium from a mouse renal progenitor population increases the ability of mouse MSCs to integrate into developing renal tissue and prevents the negative effects on kidney development, but does not appear to enhance their ability to undergo nephrogenesis.  相似文献   

20.
In humans injured myocardium cannot avert the onset and progression of ventricular dysfunction because of limited regenerative ability of myocytes. Although limited renaissance of cardiomyocytes has been reported in human infarcted hearts, it is generally accredited that non-functional fibrous tissue replaces the dead myocardium. High cardiovascular morbidity and dearth of donor hearts warrant a constant hunt for radically different approach to treat heart failure. Pluripotent stem (PS) cells possess the ability to produce functional cardiomyocytes for clinical applications and drug development, which may provide the answer to this problem. Although progress has been made in differentiating human PS cells into cardiomyocytes, however, the in vitro differentiation of pluripotent cells into cardiomyocytes involves a poorly defined, inefficient and relatively non-selective process. A thorough understanding of signaling pathways would tender a roadmap for the streamlined development of in vitro cardiac differentiation strategies. The ability to obtain unlimited numbers of human cardiomyocytes would improve development of cell-based therapies for cardiovascular diseases, facilitate the study of cardiovascular biology and improve the early stages of drug discovery. Here in this review, we highlight the interacting endogenous cellular signals and their modulators involved in directing the human PSCs towards cardiac differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号