首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

2.
3.
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction.  相似文献   

4.
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.  相似文献   

5.
6.
7.
目的:观察sonic hedgehog(Shh)信号通路在骨形态发生蛋白9(BMP9)诱导的小鼠间充质干细胞(MSCs)C3H10T1/2和C2C12成骨分化中的作用,并初步探讨其作用机制。方法:Shh信号通路抑制剂Cyclopamine和激活剂Purmorphamine以及过表达Shh腺病毒分别作用于BMP9处理的C3H10T1/2和C2C12细胞,碱性磷酸酶(ALP)检测早期成骨指标ALP,茜素红S染色检测晚期成骨指标钙盐沉积,RT-PCR检测Shh信号相关基因以及成骨关键转录因子的表达,Western blot检测Shh的表达,荧光素酶报告基因检测Smad1/5/8的转录调控活性。结果:BMP9促进Shh信号相关基因的表达,激活Shh信号可增强BMP9诱导的C3H10T1/2和C2C12细胞早晚期成骨分化并促进了BMP9诱导的Smad荧光素酶活性,抑制Shh信号后作用相反。结论:激活Shh信号通路可促进BMP9诱导的小鼠MSCs成骨分化,抑制其活性后作用相反。  相似文献   

8.
激活Hedgehog信号通路可抑制间充质干细胞成脂分化,但抑制Hedgehog信号通路是否可促进脂肪细胞分化研究结果却并不一致.本研究采用环靶明诱导C3H10T1/2细胞成脂分化,并以国际公认的成脂诱导剂混合物(胰岛素、地塞米松、吲哚美辛和IBMX)诱导细胞分化作为参考. qRT-PCR结果显示,在10 μmol/L环靶明(cyclopamine)处理的C3H10T1/2细胞中,Hedgehog信号通路各基因相对表达量显著下降,而成脂分化调控基因PPARγ,C/EBPα和成脂分化标志基因FABP4相对表达量显著升高(P < 0.05). 与此一致,Western印迹结果表明,在环靶明处理的C3H10T1/2细胞中,Hedgehog信号通路中的Shh蛋白和Gli1蛋白表达水平显著下降,成脂分化相关的PPARγ、C/EBPα和FABP4蛋白表达水平显著升高(P < 0.05). 此外,油红O染色方法证明,环靶明处理可诱导C3H10T1/2细胞成脂分化.以上研究结果提示,抑制Hedgehog信号通路对小鼠胚胎间充质干细胞的成脂分化具有促进作用,并可能为瘦肉型猪的培育和猪肉品质调控研究提供参考依据.  相似文献   

9.
The multipotential murine embryonic C3H10T1/2 mesenchymal cell line is able to undergo chondrogenesis in vitro, in a high density micromass environment, following treatment with soluble human bone morphogenetic protein-2 (BMP-2). To enhance this process, the human BMP-2 cDNA was cloned into a retroviral expression vector and a high titer, infectious retrovirus (replication defective) was generated. Infection of C3HIOT1/2 cells with this retroviral construct resulted in an infection efficiency of 90-95% and was highly effective in converting cells in micromass culture to a chondrocyte phenotype, as assessed by positive Alcian blue staining for extracellular matrix proteoglycans, increased sulfate incorporation, increased expression of the cartilage marker genes collagen type II and aggrecan, and decreased expression of collagen type I. Interestingly, BMP-2 expression in the micromass cultures also induced the expression of the cell cycle inhibitory protein/differentiation factor p21/WAF1, suggesting its functional involvement in chondrogenesis. The chondrogenic effect of retrovirally expressed BMP-2 in these high-density cultures was limited to the infected cells, since uninfected cells did not chondrify when co-cultured as a nonoverlapping micromass adjacent to BMP-2 expressing cells. These data indicate that retrovirally expressed BMP-2 is highly effective at inducing a chondrocyte phenotype in a multipotential mesenchymal cell line in vitro, and its action is restricted to the infected cell population. These findings should provide a framework for the optimization of chondrogenesis in culture using mesenchymal stem cells and retroviral gene transfer.  相似文献   

10.
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent.  相似文献   

11.
Recent studies have demonstrated that bone marrow stromal cells can undergo adipogenesis or osteoblastogenesis in vivo, and in vitro, and that peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a central role in the control of adipocyte differentiation. In the present study, we treated a murine stromal cell line (TMS-14) with a cocktail of dexamethasone, insulin and glucose (DIG cocktail), which caused the cells to convert to fat-laden cells with adipocyte-like morphology. We also exposed TMS-14 cells to DIG cocktail followed by 15-deoxy Delta(12,14)-prostaglandin J2 (15d-PGJ2), a ligand of PPAR gamma, interleukin- 11 (IL-11), 9-cis retinoic acid (9-cis RA) and vitamin K2. 15d-PGJ2 enhanced DIG cocktail-induced adipogenesis, whereas IL-11, 9-cis RA and vitamin K2 each inhibited adipogenesis induced by DIG cocktail. The gene expressions of four adipogenesis markers, PPAR gamma 2, adipocyte P2 (aP2), adipocyte determination and differentiation factor 1 (ADD1), and fatty acid synthase (FAS) were enhanced by DIG cocktail and these expressions were more enhanced by 15d-PGJ2, in contrast they were attenuated by 9-cis RA. IL-11 also attenuated the adipogenesis markers except ADD1. Western blotting showed that 15d-PGJ2 enhanced the levels of PPAR gamma, C/EBP alpha and RXR alpha proteins, while IL-11 and 9-cis RA decreased the level of PPAR gamma protein, but not C/EBP alpha protein and vitamin K2 decreased the level of C/EBP alpha protein. We also tested the effect of 15d-PGJ2 on osteoblastogenesis, using TMS-12 cells, another stromal cell clone from the same mouse, which differentiate into osteoblasts spontaneously. 15d-PGJ2 did not affect osteoblastogenesis, as detected by von Kossa staining and Cbfa-1 gene expression. These data indicate that 15d-PGJ2 enhances the expression of both PPAR gamma and C/EBP alpha and as a result it stimulates adipogenesis in murine bone marrow cells.  相似文献   

12.
Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-gamma2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-beta1 (TGF-beta1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.  相似文献   

13.
The signaling mechanisms responsible for bone morphogenetic protein (BMP) induced osteoblast differentiation remains poorly understood. Previous research demonstrated that Smad proteins are the substrates and the mediators of BMP bound serine/threonine receptor kinase. In the present study, we examined the possible involvement of extracellular signal-regulated kinase (Erk) in the BMP induced osteoblast differentiation of mesenchymal progenitor cell C3H10T1/2. Our results indicate that BMP-2 inducement increased MAP kinase activity in mesenchymal progenitor cell line C3H10T1/2. Contrary to previous reports, this increased MAP kinase activity showed a latent but sustained pattern. Elevation of Erk1 and Erk2 protein levels was observed simultaneously. RT-PCR results demonstrated that the elevation of Erk protein level in BMP-2 induced cells was from the upregulation of mRNA expression. Furthermore, upregulated Erk proteins present enhanced phosphorylation. By using a dominant-negative Erk2 cell line, we demonstrated that nonfunctional Erk2 partially eliminated BMP-2 induced cell proliferation and ALP activity in the C3H10T1/2 cell. These results indicate that Erk is involved in BMP-2 induced osteoblast differentiation. The results also demonstrate that a latent and sustained signaling pattern exists in BMP induced signaling cascade.  相似文献   

14.
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis.  相似文献   

15.
Obesity is characterized by increases in the number of mature adipocytes. Nascent adipocytes arise from mesenchymal stem cells (MSCs) by a multi-step process — MSCs are recruited to the adipocyte lineage forming determined preadipocytes, these committed progenitors proliferate, undergo growth arrest, and finally differentiate into mature adipocytes. Although the genetic mechanisms that control the differentiation of preadipocytes into mature adipocytes are understood to a large extent, the earliest events in adipogenesis — especially the commitment of MSCs into preadipocytes — are largely unknown. Recently, bone morphogenetic protein-4 (BMP-4) has been implicated in the commitment of pluripotent MSCs to the adipocyte lineage by two independent lines of investigation. First, growth-arrested 10T1/2 cells do not normally respond to a hormonal cocktail that causes various growth-arrested preadipocyte cell lines to differentiate into adipocytes, but if 10T1/2 cells are first treated with BMP-4 they will respond to these hormonal inducers by undergoing terminal adipocyte differentiation. Second, a preadipocyte cell line, A33 cells, derived from 10T1/2 cells after exposing the cells to the DNA methyltransferase inhibitor 5-azacytidine was shown to express BMP-4, and this endogenous BMP-4 expression is required for acquisition of the preadipocyte phenotype of these cells. A role for the BMP-4 signaling pathway in adipogenesis is discussed.  相似文献   

16.
17.
18.
19.
Cadherins, a family of cell-cell adhesion molecules, provide recognition signals that are important for cell sorting and aggregation during tissue development. This study was performed to determine whether distinct cadherin repertoires define tissue-specific lineages during differentiation of immature C3H10T1/2 and C2C12 mesenchymal cells. Both cell lines expressed mRNA for N-cadherin (N-cad), cadherin-11 (C11), and R-cadherin (R-cad). After induction of osteogenesis by recombinant human BMP-2 (rhBMP-2) treatment, steady state N-cad mRNA slightly increased in C3H10T1/2 cells. Likewise, the abundance of C11 mRNA increased in both cell lines, although the changes were more remarkable in C2C12 cells. By contrast, R-cad expression was almost shut off by rhBMP-2. The immature but committed osteoblastic MC3T3-E1 cells exhibited only minor changes in N-cad and C11 mRNA abundance after rhBMP-2 treatment. Whereas adipogenic differentiation was associated with a net decrease of N-cad and C11 expression in C3H10T1/2 cells, induction of myogenesis in C2C12 cells resulted in up-regulation of N-cad, while R-cad mRNA became undetectable in either case. Similarly, the adipocytic 3T3-L1 cells expressed very low levels of all cadherins when fully differentiated. Therefore, the repertoire of cadherins present in undifferentiated mesenchymal cells undergoes distinct changes during transition to mature cell phenotypes. Although neither N-cad nor C11 represent strict tissue-specific markers, the relative abundance of these mesenchymal cadherins defines lineage-specific signatures, perhaps providing recognition signals for aggregation and differentiation of committed precursors.  相似文献   

20.
C3H10T1/2多潜能干细胞成脂过程分为定向和分化两个阶段,骨形成蛋白4(BMP4)可以诱导其定向成前脂肪细胞.已有的研究表明,脂肪组织特异性敲除低密度脂蛋白受体相关蛋白1(Lrp1)的小鼠体重减轻,脂肪组织含量减少,揭示此基因对成脂具有重要作用.然而,目前尚不清楚Lrp1是否在成脂定向过程中发挥作用.采用小干扰RNA技术(RNAi),在体外水平研究低密度脂蛋白Lrp1对C3H10T1/2多潜能干细胞成脂定向的作用.分别在C3H10T1/2成脂的定向期和脂滴成熟期敲低Lrp1,通过显微镜下观察、油红O染色、Western blotting等实验证实,定向期而非脂滴成熟期敲低Lrp1显著抑制C3H10T1/2多潜能干细胞成脂.BMP4通过激活下游Smad1/5/8信号通路发挥作用,而敲低Lrp1显著抑制BMP4诱导的Smad1/5/8磷酸化.这些结果说明:敲低Lrp1通过下调Smad信号通路,抑制BMP4诱导的C3H10T1/2多潜能干细胞成脂定向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号