首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome project of the nematode Caenorhabditis elegans is completed. It is important and useful to disrupt nematode genes to know their function. We treated wild-type animals with potential candidates for mutagens for reverse genetics, EMS (ethyl methanesulfonate), short-wavelength UV, and long-wavelength UV in the presence of TMP (trimethylpsoralen). We estimated forward mutation rates by counting the occurrence of a marker unc-22 mutation. We found that the forward mutation rate by TMP/UV could be comparable with EMS by improving the frequency one order higher than before. We next isolated mutants of another marker gene ben-1 and examined the probability for the deletion mutations by PCR and sequencing. Deletion mutations were found only by TMP/UV method, which suggested TMP/UV is the choice for deletion mutagenesis among these methods. As a pilot experiment, we could isolate actual deletion mutations at a much higher frequency than previously.  相似文献   

2.
I. Katsura  K. Kondo  T. Amano  T. Ishihara    M. Kawakami 《Genetics》1994,136(1):145-154
We have isolated 13 fluoride-resistant mutants of the nematode Caenorhabditis elegans. All the mutations are recessive and mapped to five genes. Mutants in three of the genes (class 1 genes: flr-1 X, flr-3 IV, and flr-4 X) are resistant to 400 μg/ml Naf. Furthermore, they grow twice as slowly as and have smaller brood size than wild-type worms even in the absence of fluoride ion. In contrast, mutants in the other two genes (class 2 genes: flr-2 V and flr-5 V) are only partially resistant to 400 μg/ml NaF, and they have almost normal growth rates and brood sizes in the absence of fluoride ion. Studies on the phenotypes of double mutants showed that class 2 mutations are epistatic to class 1 mutations concerning growth rate and brood size but hypostatic with respect to fluoride resistance. We propose two models that can explain the epistasis. Since fluoride ion depletes calcium ion, inhibits some protein phosphatases and activates trimeric G-proteins, studies on these mutants may lead to discovery of a new signal transduction system that controls the growth of C. elegans.  相似文献   

3.
This report describes a molecular method for determining in a first step the generic composition of a nematode community and in a second step, the resistance of each species to benzimidazole (BZ). We first established a polymerase chain reaction (PCR) linked to a restriction fragment length polymorphism strategy using the isotype 1 beta-tubulin gene. This method overcame the limitations of morphological identification of larval stages of trichostrongylid nematode species. Geographically distant isolates from the three main gastrointestinal species in temperate zones, Teladorsagia circumcincta, Haemonchus contortus, and Trichostrongylus colubriformis, were distinguished using this method. We then used an allele-specific PCR (AS-PCR) to detect mutations of residue 200 of the beta-tubulin, which is implicated in BZ resistance. The sequences of several samples confirmed the BZ-resistance genotype determined by AS-PCR. The ability to process large numbers of samples simultaneously makes this PCR-based strategy particularly suitable for epidemiological studies. It may also be useful for monitoring the emergence of resistant alleles in nematode communities.  相似文献   

4.
Hemiasterlins are sponge-derived tripeptides that inhibit cell growth by depolymerizing existing microtubules and inhibiting microtubule assembly. Since hemiasterlins are poor substrates for P-glycoprotein, they are attractive candidates for cancer therapy and have been undergoing clinical trials. The basis of resistance to a synthetic analogue of hemiasterlin, HTI-286 (HTI), was examined in cell populations derived from ovarian carcinoma (A2780/1A9) cells selected in HTI-286. 1A9-HTI-resistant cells (1A9-HTI(R) series) were 57-89-fold resistant to HTI. Cross-resistance (3-186-fold) was observed to other tubulin depolymerizing drugs, with collateral sensitivity (2-14-fold) to tubulin polymerizing agents. Evaluation of the percentage of polymerized and soluble tubulin in 1A9 parental and 1A9-HTI(R) cells corroborated the HTI cytotoxicity data. At 22 degrees C or 37 degrees C, in the absence of any drug, the percentage of polymerized microtubules for each of the 1A9-HTI(R) populations was greater than that in the 1A9 parental cells, consistent with more stable microtubules. Furthermore, microtubules in the 1A9-HTI(R) populations were also more resistant to depolymerization at 4 degrees C and had more acetylated and detyrosinated (Glu-tubulin) alpha-tubulin, all characteristic of more stable microtubules. The 1A9-HTI(R) cell populations exhibited either a single nucleotide change in the M40 beta-tubulin isotype, S172A, or in two cell populations where no beta-tubulin mutation was detected, mutations in the Kalpha-1 alpha-tubulin isotype, S165P and R221H in one resistant cell population and I384V in another. Unlike reports of mutations resulting in reduced drug affinity, the experimental data and location of mutations are consistent with resistance to HTI-286 mediated by microtubule-stabilizing mutations in beta- or alpha-tubulin.  相似文献   

5.
Volatile anesthetics (VAs) disrupt nervous system function by an ill-defined mechanism with no known specific antagonists. During the course of characterizing the response of the nematode C. elegans to VAs, we discovered that a C. elegans pheromone antagonizes the VA halothane. Acute exposure to pheromone rendered wild-type C. elegans resistant to clinical concentrations of halothane, increasing the EC(50) from 0.43 +/- 0.03 to 0.90 +/- 0.02. C. elegans mutants that disrupt the function of sensory neurons required for the action of the previously characterized dauer pheromone blocked pheromone-induced resistance (Pir) to halothane. Pheromone preparations from loss-of-function mutants of daf-22, a gene required for dauer pheromone production, lacked the halothane-resistance activity, suggesting that dauer and Pir pheromone are identical. However, the pathways for pheromone's effects on dauer formation and VA action were not identical. Not all mutations that alter dauer formation affected the Pir phenotype. Further, mutations in genes not known to be involved in dauer formation completely blocked Pir, including those altering signaling through the G proteins Goalpha and Gqalpha. A model in which sensory neurons transduce the pheromone activity through antagonistic Go and Gq pathways, modulating VA action against neurotransmitter release machinery, is proposed.  相似文献   

6.
Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C. elegans is a suitable system for studying parasitic nematode genes that may be involved in drug resistance.  相似文献   

7.
The nematode C. elegans is an established model for developmental biology. Since the early 90's, this simple model organism has been increasingly used for studying human disease pathogenesis. C. elegans models based either on the mutagenesis of human disease genes conserved in this nematode or transgenesis with disease genes not conserved in C. elegans show several features that are observed in mammalian models. These observations suggest that the genetic dissection and pharmacological manipulation of disease-like phenotypes in C. elegans will shed light on the cellular mechanisms that are altered in human diseases, and the compounds that may be used as drugs. This review illustrates these aspects by commenting on two inherited degenerative diseases, Duchenne's muscular dystrophy and Huntington's neurodegenerative disease.  相似文献   

8.
The great majority of lifespan-augmenting mutations were discovered in the nematode Caenorhabditis elegans . In particular, genetic disruption of insulin-like signaling extends longevity 1.5- to 3-fold in the nematode, and to lesser degrees in other taxa, including fruit flies and mice. C. elegans strains bearing homozygous nonsense mutations in the age-1 gene, which encodes the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3KCS), produce progeny that were thought to undergo obligatory developmental arrest. We now find that, after prolonged developmental times at 15–20 °C, they mature into extremely long-lived adults with near-normal feeding rates and motility. They survive to a median of 145–190 days at 20 °C, with nearly 10-fold extension of both median and maximum adult lifespan relative to N2DRM, a long-lived wild-type stock into which the null mutant was outcrossed. PI3K-null adults, although a little less thermotolerant, are considerably more resistant to oxidative and electrophilic stresses than worms bearing normal or less long-lived alleles. Their unprecedented factorial gains in survival, under both normal and toxic environments, are attributed to elimination of residual and maternally contributed PI3KCS or its products, and consequent modification of kinase signaling cascades.  相似文献   

9.
The nematode, Caenorhabditis elegans, can be mutated to resistance to the Cry5B toxin of Bacillus thuringiensis. By cloning and characterization of these C. elegans resistance genes, we have determined that a major mechanism by which C. elegans resists Cry5B is by loss of function mutations in any one of four gylcosyltransferase genes that glycosylate glycolipids specific to arthropods. Without correct gylcosylation, binding of Cry5B is greatly impaired in C. elegans. That these specific arthroseries glycolipids do not occur in vertebrates potentially helps explain why Cry toxins are specific for arthropods.  相似文献   

10.
Multidrug resistance-associated proteins (MRPs), when overexpressed, confer drug resistance to cancer cells by exporting anti-cancer agents through the cell membrane, but their role in animal development has not been elucidated. Here we show that an MRP homolog regulates larval development in the nematode Caenorhabditis elegans. C. elegans forms a special third-stage larva called a dauer larva under conditions inappropriate for growth. By contrast, we found that mutants in mrp-1, an MRP homolog gene, form dauer larvae even under conditions appropriate for growth, in the background of certain mutations that partially block the insulin signaling pathway. A functional mrp-1::GFP gene was shown to be expressed in many tissues, and the wild-type mrp-1 gene must be expressed in multiple tissues for a wild-type phenotype. Human MRP1 could substitute for C. elegans MRP-1 in dauer larva regulation, and an inhibitor of the human MRP1 transport activity impaired this function, showing that export activity is required for normal dauer larva regulation. Epistasis studies revealed that MRP-1 acts in neither the TGF-beta nor the cGMP signaling pathway. mrp-1 mutations enhanced the dauer-constitutive phenotype of mutants in the insulin signaling pathway more strongly than that in other pathways. Thus, MRP-1, through its export activity, supports the induction of the normal (non-dauer) life cycle by the insulin signaling pathway.  相似文献   

11.
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non-pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin-filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif-1 and egl-9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek-1, mek-1, mev-1, pgp-1,3 and vhl-1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf-2, age-1 and daf-16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.  相似文献   

12.
13.
14.
Lu C  Mains PE 《Genetics》2005,170(1):115-126
The C. elegans zygote supports both meiosis and mitosis within a common cytoplasm. The meiotic spindle is small and is located anteriorly, whereas the first mitotic spindle fills the zygote. The C. elegans microtubule-severing complex, katanin, is encoded by the mei-1 and mei-2 genes and is solely required for oocyte meiotic spindle formation; ectopic mitotic katanin activity disrupts mitotic spindles. Here we characterize two mutations that rescue the lethality caused by ectopic MEI-1/MEI-2. Both mutations are gain-of-function alleles of tba-2 alpha-tubulin. These tba-2 alleles do not prevent MEI-1/MEI-2 microtubule localization but do interfere with its activity. TBA-1 and TBA-2 are redundant for viability, but when katanin activity is limiting, TBA-2 is preferred over TBA-1 by katanin. This is similar to what we previously reported for the beta-tubulins. Removing both preferred alpha- and beta-isoforms results in normal development, suggesting that the katanin isoform preferences are not absolute. We conclude that while the C. elegans embryo expresses redundant alpha- and beta-tubulin isoforms, they nevertheless have subtle functional specializations. Finally, we identified a dominant tba-2 allele that disrupts both meiotic and mitotic spindle formation independently of MEI-1/MEI-2 activity. Genetic studies suggest that this tba-2 mutation has a "poisonous" effect on microtubule function.  相似文献   

15.
An important quest in modern biology is to identify genes involved in aging. Model organisms such as the nematode Caenorhabditis elegans are particularly useful in this regard. The C. elegans genome has been sequenced [1], and single gene mutations that extend adult life span have been identified [2]. Among these longevity-controlling loci are four apparently unrelated genes that belong to the clk family. In mammals, telomere length and structure can influence cellular, and possibly organismal, aging. Here, we show that clk-2 encodes a regulator of telomere length in C. elegans.  相似文献   

16.
We recently described the isolation of a mutant Chinese hamster ovary cell (Cmd 4) resistant to the cytotoxic effects of colcemid (Cabral et al., Cell 20:29-36, 1980). This mutant carries an altered beta-tubulin but still grows normally at 37 degrees C. In the present study we found that Cmd 4 is temperature sensitive for growth at 40.3 degrees C. A class of revertants selected for temperature resistance had simultaneously lost colcemid resistance and the altered beta-tubulin. In addition, we isolated a temperature-resistant revertant which carries a further alteration in the mutant beta-tubulin polypeptide. This second alteration appears to make the mutant beta-tubulin incompetent to assemble into microtubules, resulting in a strain which is again colcemid sensitive. These revertant cell lines provide strong evidence that a mutation in beta-tubulin can confer both colcemid resistance and temperature sensitivity on a mammalian cell line. Cellular microtubules studied by indirect immunofluorescence in both mutant and revertant cell lines had an apparently normal distribution at permissive and nonpermissive temperatures, yet mitosis appears to be abnormal in the mutant cell line. We conclude from these studies that incorporation of the altered beta-tubulin into microtubules does not affect their distribution but may affect their function during mitosis.  相似文献   

17.
During development, progression through the cell cycle must be coordinately regulated with cellular differentiation. Despite significant progress in identifying genes required independently for each of these processes, the molecules which facilitate this cross talk have for the most part been elusive. Using the six macrophage-like coelomocytes of the nematode Caenorhabditis elegans as a model system to gain insight into the mesodermal differentiation pathway, we have isolated a set of mutants that alter coelomocyte numbers. One of these mutations, cc600, apparently results from a partial loss-of-function in the C. elegans cyclin D gene, cyd-1. The mutant has coelomocyte-specific defects without changes in other lineages. The mutants show that cell growth, terminal differentiation and cellular function proceed in the absence of cyd-1 activity and cell division. The results suggest that certain mesodermal lineages may be uniquely affected by changes in cyd-1 activity.  相似文献   

18.
The dense-bodies in the body wall muscle of the nematode Caenorhabditis elegans function to anchor the actin thin filaments to the adjacent sarcolemma. One of the major components of the dense-bodies is the actin-binding protein alpha-actinin. To facilitate a genetic analysis of alpha-actinin, we have cloned a cDNA encoding the nematode protein, identified its position on the nematode physical map, and developed a unique PCR based approach to test the position of the cloned gene relative to known genetic deletions. The peptide sequence deduced from the cDNA shows that, apart from a few exceptional regions, the nematode protein shows strong similarity to other known alpha-actinins. Its position on the genetic map shows that none of the known muscle affecting mutations identified in C. elegans are in this alpha-actinin gene. This gene has been given the name atn-1 (alpha-actinin-1).  相似文献   

19.
The cell division and differentiation events that occur during the development of the nematode Caenorhabditis elegans are nearly identical between different individuals, a feature that distinguishes this organism from larger and more complex metazoans, such as humans and Drosophila. In view of this discrepancy, it might be expected that the regulation of cell growth, division and differentiation in C. elegans would involve mechanisms separate from those utilized in larger animals. However, the results of recent genetic, molecular and cellular studies indicate that C. elegans employs an arsenal of developmental regulatory mechanisms quite similar to those wielded by its arthropod and vertebrate relatives. Thus, the nematode system is providing both novel and complementary insights into the general problem of how growth and patterning events are integrated in development. This review offers a general perspective on the regulation of cell division and growth in C. elegans, emphasizing recent studies of these crucial aspects of development.  相似文献   

20.
Adiponectin is an adipokine with insulin-sensitising actions in vertebrates. Its receptors, AdipoR1 and AdipoR2, are PAQR-type proteins with 7-transmembrane domains and topologies reversed that of GPCR's, i.e. their C-termini are extracellular. We identified three adiponectin receptor homologs in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the intestine (the main fat-storing tissue), hypodermis, muscles, neurons and secretory tissues, from which they could exert systemic effects. Analysis of mutants revealed that paqr-1 and -2 are novel metabolic regulators in C. elegans and that they act redundantly but independently from paqr-3. paqr-2 is the most important of the three paqr genes: mutants grow poorly, fail to adapt to growth at low temperature, and have a very high fat content with an abnormal enrichment in long (C20) poly-unsaturated fatty acids when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations in aak-2, the C. elegans homolog of AMPK, or nhr-80, another nuclear hormone receptor gene, suppress the growth phenotype of paqr-2 mutants, probably because they restore the balance between energy expenditure and storage. We conclude that paqr-1 and paqr-2 are receptors that regulate fatty acid metabolism and cold adaptation in C. elegans, that their main function is to promote energy utilization rather than storage, and that PAQR class proteins have regulated metabolism in metazoans for at least 700 million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号