首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.  相似文献   

2.
Li Y  Tamm LK 《Biophysical journal》2007,93(3):876-885
A thorough understanding of the structure of fusion domains of enveloped viruses in changing lipid environments helps us to formulate mechanistic models on how they might function in mediating viral entry by membrane fusion. We have expressed the N-terminal fusion domain of HIV-1 gp41 as a construct that is water-soluble in the absence of membranes, but that also binds with high affinity to lipid micelles and bilayers in their presence. We have solved the structure and studied the dynamics of this domain bound to dodecylphosphocholine micelles by homo- and heteronuclear NMR spectroscopy. The fusion peptide forms a stable hydrophobic helix from Ile(4) to Ala(14), but is increasingly more disordered and dynamic in a segment of intermediate polarity that stretches from Ala(15) to Ser(23). When bound to lipid bilayers at low concentration, the HIV fusion domain is also largely alpha-helical, as determined by CD and FTIR spectroscopy. However, at higher protein/lipid ratios, the domain is partially converted to form beta-structures in lipid bilayers. Controlled lipid mixing occurs at concentrations that support the alpha-helical, but not the beta-strand conformation.  相似文献   

3.
The BAR (Bin/amphiphysin/Rvs) domain defines an emerging superfamily of proteins implicated in fundamental biological processes by sensing and inducing membrane curvature. We identified a novel autoregulatory function for the BAR domain of two related GAPs' (GTPase-activating proteins) of the GRAF (GTPase regulator associated with focal adhesion kinase) subfamily. We demonstrate that the N-terminal fragment of these GAPs including the BAR domain interacts directly with the GAP domain and inhibits its activity. Analysis of various BAR and GAP domains revealed that the BAR domain-mediated inhibition of these GAPs' function is highly specific. These GAPs, in their autoinhibited state, are able to bind and tubulate liposomes in vitro, and to generate lipid tubules in cells. Taken together, we identified BAR domains as cis-acting inhibitory elements that very likely mask the active sites of the GAP domains and thus prevent down-regulation of Rho proteins. Most remarkably, these BAR proteins represent a dual-site system with separate membrane-tubulation and GAP-inhibitory functions that operate simultaneously.  相似文献   

4.
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.  相似文献   

5.
Locking the kink in the influenza hemagglutinin fusion domain structure   总被引:1,自引:0,他引:1  
We have previously identified Trp(14) as a critical residue that stabilizes the kink in the boomerang structure of the influenza fusion domain and found that cells expressing hemagglutinin with a Trp(14) to Ala mutation cannot fuse with red blood cells. However, mutating another aromatic residue, Phe(9), on the other side of the kink did not have a significant effect on fusion or the ability of the mutant fusion peptide to bind to or perturb the bilayer structure of lipid model membranes. We reasoned that Phe is not as potent to contribute to the kink as the larger Trp and that the cooperation of Phe(9) and Ile(10) might be needed to elicit the same effect. Indeed, the double mutant F9A/I10A diminished cell-cell fusion and the ability of the fusion domain to bind to and perturb lipid bilayers in a similar fashion as the W14A mutant. A structure determination of F9A in lipid micelles by solution NMR shows that F9A adopts a similarly kinked structure as wild type. Distances between the two arms of the boomerang structure of wild type, F9A, W14A, and F9A/I10A in lipid bilayers were measured by double electron-electron resonance spectroscopy and showed that the kinks of W14A and F9A/I10A are more flexible than those of wild type and F9A. These results underscore the importance of large hydrophobic residues on both sides of the kink region of the influenza hemagglutinin fusion domain to fix the angle of the boomerang structure and thereby confer fusion function to this critical domain.  相似文献   

6.
Lu Q  Yu J  Yan J  Wei Z  Zhang M 《Molecular biology of the cell》2011,22(22):4268-4278
Myosin X (MyoX) is an unconventional myosin that is known to induce the formation and elongation of filopodia in many cell types. MyoX-induced filopodial induction requires the three PH domains in its tail region, although with unknown underlying molecular mechanisms. MyoX's first PH domain is split into halves by its second PH domain. We show here that the PH1(N)-PH2-PH1(C) tandem allows MyoX to bind to phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P(3)] with high specificity and cooperativity. We further show that PH2 is responsible for the specificity of the PI(3,4,5)P(3) interaction, whereas PH1 functions to enhance the lipid membrane-binding avidity of the tandem. The structure of the MyoX PH1(N)-PH2-PH1(C) tandem reveals that the split PH1, PH2, and the highly conserved interdomain linker sequences together form a rigid supramodule with two lipid-binding pockets positioned side by side for binding to phosphoinositide membrane bilayers with cooperativity. Finally, we demonstrate that disruption of PH2-mediated binding to PI(3,4,5)P(3) abolishes MyoX's function in inducing filopodial formation and elongation.  相似文献   

7.
As a first step toward understanding the principles of the targeting of C2 domains to membranes, we have carried out a molecular dynamics simulation of the C2 domain of cytosolic phospholipase A2 (cPLA2-C2) in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer at constant pressure and temperature (NPT, 300 K and 1 atm). Using the high-resolution crystal structure of cPLA2-C2 as a starting point, we embedded two copies of the C2 domain into a pre-equilibrated membrane at the depth and orientation previously defined by electron paramagnetic resonance (EPR). Noting that in the membrane-bound state the three calcium binding loops are complexed to two calcium ions, we initially restrained the calcium ions at the membrane depth determined by EPR. But the depth and orientation of the domains remained within EPR experimental errors when the restraints were later removed. We find that the thermally disordered, chemically heterogeneous interfacial zones of phosphatidylcholine bilayers allow local lipid remodeling to produce a nearly perfect match to the shape and polarity of the C2 domain, thereby enabling the C2 domain to assemble and optimize its own lipid docking site. The result is a cuplike docking site with a hydrophobic bottom and hydrophilic rim. Contrary to expectations, we did not find direct interactions between the protein-bound calcium ions and lipid headgroups, which were sterically excluded from the calcium binding cleft. Rather, the lipid phosphate groups provided outer-sphere calcium coordination through intervening water molecules. These results show that the combined use of high-resolution protein structures, EPR measurements, and molecular dynamics simulations provides a general approach for analyzing the molecular interactions between membrane-docked proteins and lipid bilayers.  相似文献   

8.
The mixing properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were examined in liquid-crystalline phase using fluorescent probes incorporated into lipid bilayers. The excimer to monomer (E/M) fluorescence ratio of 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine (PPC) versus PPC concentration was higher for binary mixtures containing phosphatidylcholine (PC)/phosphatidylethanolamine (PE) (1:1) compared to PC matrix. When POPC was gradually replaced with POPE, the E/M ratio also increased suggesting the enhanced lateral mobility or the lateral enrichment of PPC into domains or both. Evidences for the PE-induced domain formation were further provided by resonance energy transfer between 2-(4, 4-difluoro-5-methyl-4-boro-3a, 4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero- 3-phospho choline and PPC, which was enhanced as a function of PE concentration, and by the polarization of 1,6-diphenyl-1,3, 5-hexatriene. In addition, PE reduced free volume and polarity of lipid bilayers as measured by the emission fluorescence of 1,2-bis PPC and 6-lauroyl-2-dimethylaminonaphthalene. When POPE analogs with a methylated head group instead of normal POPE were used, the diminished effect on the domain formation was shown in the order N-methyl PE > N,N-dimethyl PE. The results suggest that the mixing properties of POPE and POPC are not random but that lipid domains of phospholipids are formed.  相似文献   

9.
Psachoulia E  Sansom MS 《Biochemistry》2008,47(14):4211-4220
The mechanism of interaction of pleckstrin homology (PH) domains with phosphatidylinositol 4,5-bisphosphate (PIP 2)-containing lipid bilayers remains uncertain. While crystallographic studies have emphasized PH-inositol 1,4,5-trisphosphate (IP 3) interactions, biophysical studies indicate a degree of less specific protein-bilayer interactions. We have used molecular dynamics simulations to characterize the interactions of the PH domain from phospholipase C-delta1 with IP 3 and with PIP 2, the latter in lipid bilayers and in detergent micelles. Simulations of the PH domain in water reveal a reduction in protein flexibility when IP 3 is bound. Simulations of the PH domain bound to PIP 2 in lipid bilayers indicate a tightening of ligand-protein interactions relative to the PH-IP 3 complex, alongside formation of H-bonds between PH side chains and lipid (PC) headgroups, and a degree of penetration of hydrophobic side chains into the core of the bilayer. Comparison with simulations of the PH-bound domain to a PC bilayer in the absence of PIP 2 suggests that the presence of PIP 2 increases the extent of PH-membrane interactions. Thus, comparative molecular dynamics simulations reveal how a PI-binding domain undergoes changes in conformational dynamics on binding to a PIP 2-containing membrane and how interactions additional to those with the PI headgroup are formed.  相似文献   

10.
Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case.  相似文献   

11.
Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case.  相似文献   

12.
Galactosylceramide (GalCer), a glycosphingolipid, is believed to exist in the extracellular leaflet of cell membranes in nanometer-sized domains or rafts. The local clustering of GalCer within rafts is thought to facilitate the initial adhesion of certain viruses, including HIV-1, and bacteria to cells through multivalent interactions between receptor proteins (gp120 for HIV-1) and GalCer. Here we use atomic force microscopy (AFM) to study the effects of cholesterol on solid-phase GalCer domain microstructure and miscibility with a fluid lipid 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) in supported lipid bilayers. Using "slow-cooled vesicle fusion" to prepare the supported lipid bilayers, we were able to overcome the nonequilibrium effects of the substrate (verified by comparison to results for giant unilamellar vesicles) and accurately quantify the dramatic effect of cholesterol on the GalCer domain surface area/perimeter ratio (A(D)/P) and DLPC-GalCer miscibility. We compare these results to a supported lipid bilayer system in which the bilayer is rapidly cooled (nonequilibrium conditions), "quenched vesicle fusion", and find that the microstructures are remarkably similar above a cholesterol mol fraction of approximately 0.06. We determined that GalCer domains were contained in one leaflet distal to the mica substrate through qualitative binding experiments with Trichosanthes kirilowii agglutinin (TKA), a galactose-specific lectin, and AFM of Langmuir-Blodgett deposited GalCer/DLPC supported lipid bilayers. In addition, GalCer domains in bilayers containing cholesterol rearranged upon tip-sample contact. Our results further serve to clarify why discrepancies exist between different model membrane systems and between model membranes and cell membranes. In addition, these results offer new insight into the effect of cholesterol and surrounding lipid on domain microstructure and behavior. Finally, our observations may be pertinent to cell membrane structure, dynamics, and HIV infection.  相似文献   

13.
The N-terminal domain of the capsid protein cleavage product of the flock house virus (FHV) consists of 21 residues and forms an amphipathic alpha-helix, which is thought to play a crucial role in permeabilizing biological membranes for RNA translocation in the host cell. We have found that the Met --> Nle variant of this domain (denoted here as gamma1) efficiently induces the formation of the interdigitated gel phase (LbetaI) of 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers. In situ scanning force microscopy of solid supported bilayers and fluorescence spectroscopy of peptide-treated DPPC vesicles provide evidence for the formation of acyl chain interdigitated lipid domains. It could be shown by fluorescence spectroscopy that the peptide inserts in the DPPC matrix above the main transition temperature of the lipid, while the formation of domains with decreased thickness occurs after the sample is cooled to 25 degrees C. The orientation and secondary structure of the peptide in lipid bilayers were investigated using attenuated total reflectance infrared (ATR-IR) and circular dichroism (CD) spectroscopy. These results enabled us to formulate a mechanistic model for the peptide-mediated induction of interdigitation in DPPC bilayers. Moreover, the membrane activity of gamma1 with gel phase lipids established in this study may have further implications for the infection strategy adopted by simple RNA viruses.  相似文献   

14.
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.  相似文献   

15.
Intrinsic heterogeneities, represented as domain formations in biological membranes, are important to both the structure and function of the membranes. We observed domain formations in mixed lipid bilayers of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol) in a fluid environment using an atomic force microscope (AFM). At room temperature, we demonstrated that both microscopic and nanoscopic domains coexist and the DPPC-rich domain is approximately 1.4 nm higher than the surrounding DLPC-rich membrane areas as a consequence of intrinsic phase differences. DPPC-rich microscopic domains became larger as DPPC concentration increased. In cholesterol-free mixtures, nanoscopic DPPC-rich domain sizes ranged from 26 to 46 nm depending on phospholipid concentration. Domain size varied between 33 and 48 nm in the presence of cholesterol (0 < or = [chol] < or = 40). The nanoscopic domains were markedly fragmented near [chol] = 0.135 and appeared to fuse more readily into microscopic domains at higher and lower [chol]. By phase balance analyses we demonstrated phase behavior differences between a free-vesicle GUV system studied by confocal light microscopy and a supported membrane system studied by AFM. We propose a new three-dimensional phase diagram elucidating the effects of a solid substrate support on lipid phase behavior relevant to complex membrane phase phenomena in biological systems.  相似文献   

16.
The protein kinase C and casein kinase 2 substrates in neurons (PACSINs) represent a subfamily of membrane-binding proteins characterized by an amino-terminal Bin-Amphiphysin-Rvs (F-BAR) domain. PACSINs link membrane trafficking with actin dynamics and regulate the localization of distinct cargo molecules. The F-BAR domain forms a dimer essential for lipid binding. We have obtained crystals of authentic murine PACSIN 2 that contain an ordered F-BAR domain, indicating that additional domains are flexibly connected to F-BAR. The structure shares similarity to other BAR domains and exhibits special features unique to PACSINs. These include the uneven distribution of charged residues on the concave molecular surface and a so-called wedge loop that is driven into the membrane upon binding of PACSIN. The murine PACSIN 2 F-BAR domain requires dimerization for sensing of curved membranes, and the present structure also provides a mechanism for higher-order oligomer formation. Importantly, comparison of murine with human and Drosophila PACSIN 2 F-BAR domains reveals stark differences in the orientation of distal helical segments leading to a wider crescent shape of murine PACSIN 2. We define hinge residues for these movements that may help PACSINs sense and concomitantly reinforce membrane curvature.  相似文献   

17.
Direct visualization of the fluid-phase/ordered-phase domain structure in mica-supported bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine mixtures is performed with atomic force microscopy. The system studied is a double bilayer supported on a mica surface in which the top bilayer (which is not in direct contact with the mica) is visualized as a function of temperature. Because the top bilayer is not as restricted by the interactions with the surface as single supported bilayers, its behavior is more similar to a free-standing bilayer. Intriguing straight-edged anisotropic fluid-phase domains were observed in the fluid-phase/ordered-phase coexistence temperature range, which resemble the fluid-phase/ordered-phase domain patterns observed in giant unilamellar vesicles composed of such phospholipid mixtures. With the high resolution provided by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples. In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems.  相似文献   

18.
Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate‐lipid‐targeting and membrane‐curvature‐generating element. Upon binding phosphatidylinositol 4,5‐bisphosphate, the N-terminal helix (H0) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher‐order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH‐domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed.  相似文献   

19.
Karim CB  Marquardt CG  Stamm JD  Barany G  Thomas DD 《Biochemistry》2000,39(35):10892-10897
Chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) have been used to analyze the structure and function of phospholamban (PLB), a 52-residue integral membrane protein that regulates the calcium pump (Ca-ATPase) in cardiac sarcoplasmic reticulum (SR). PLB exists in equilibrium between monomeric and pentameric forms, as observed by SDS-PAGE, EPR, and fluorescence. It has been proposed that inhibition of the pump is due primarily to the monomeric form, with both pentameric stability and inhibition dependent primarily on the transmembrane (TM) domain. To test these hypotheses, we have studied the physical and functional properties of a synthetic null-cysteine PLB analogue that is entirely monomeric on SDS-PAGE, and compared it with the synthetic null-cysteine TM domain (residues 26-52). The TM domain was found to be primarily oligomeric on SDS-PAGE, and boundary lipid spin label analysis in lipid bilayers verified that the isolated TM domain is more oligomeric than the full-length parent molecule. These results indicate that the stability of the PLB pentamer is due primarily to attractive interactions between hydrophobic TM domains, overcoming the repulsive electrostatic interactions between the cationic cytoplasmic domains (residues 1-25). When reconstituted into liposomes containing the Ca-ATPase, the null-cysteine TM domain had the same inhibitory function as that of the full-length parent molecule. We conclude that the TM domain of PLB is sufficient for inhibitory function, the oligomeric stability of PLB does not determine its inhibitory activity, and the three Cys residues in the TM domain are not required for inhibitory function.  相似文献   

20.
RGS2 and RGS5 are inhibitors of G-protein signaling belonging to the R4/B subfamily of RGS proteins. We here show that RGS2 is a much more potent attenuator of M1 muscarinic receptor signaling than RGS5. We hypothesize that this difference is mediated by variation in their ability to constitutively associate with the plasma membrane (PM). Compared with full-length RGS2, the RGS-box domains of RGS2 and RGS5 both show reduced PM association and activity. Prenylation of both RGS-box domains increases activity to RGS2 levels, demonstrating that lipid bilayer targeting increases RGS domain function. Amino-terminal domain swaps confirm that key determinants of localization and function are found within this important regulatory domain. An RGS2 amphipathic helix domain mutant deficient for phospholipid binding (L45D) shows reduced PM association and activity despite normal binding to the M1 muscarinic receptor third intracellular loop and activated Galpha(q). Replacement of a unique dileucine motif adjacent to the RGS2 helix with corresponding RGS5 residues disrupts both PM localization and function. These data suggest that RGS2 contains a hydrophobic extension of its helical domain that imparts high efficiency binding to the inner leaflet of the lipid bilayer. In support of this model, disruption of membrane phospholipid composition with N-ethylmaleimide reduces PM association of RGS2, without affecting localization of the M1 receptor or Galpha(q). Together, these data indicate that novel features within the RGS2 amphipathic alpha helix facilitate constitutive PM targeting and more efficient inhibition of M1 muscarinic receptor signaling than RGS5 and other members of the R4/B subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号