首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeographic studies separate the Antarctic Notothenioid fish fauna into high- and low-latitude species. Past studies indicate that some species found in the high-latitude freezing waters of the High-Antarctic Zone have low-serum hysteresis freezing points, while other species restricted to the low-latitude seasonal pack ice zone have higher serum hysteresis freezing points above the freezing point of seawater (−1.9°C), but the relationship has not been systematically investigated. Freeze avoidance was quantified in 11 species of Antarctic icefishes by determining the hysteresis freezing points of their blood serum, in addition, the freezing point depression from serum osmolytes, the antifreeze activity from serum antifreeze glycoproteins (AFGPs), and the antifreeze activity from serum antifreeze potentiating protein were measured for each species. Serum hysteresis freezing point, a proxy for organismal freeze avoidance, decreased as species were distributed at increasing latitude (linear regression r 2 0.66, slope −0.046°C °latitude−1), which appeared largely independent of phylogenetic influences. Greater freeze avoidance at high latitudes was largely a result of higher levels of antifreeze activity from serum AFGPs relative to those in species inhabiting the low-latitude waters. The icefish fauna could be separated into a circum High-Antarctic Group of eight species that maintained serum hysteresis freezing points below −1.9°C even when sampled from less severe habitats. The remaining three species with low-latitude ranges restricted to the waters of the northern part of the west Antarctic Peninsula and Scotia Arc Islands had serum hysteresis freezing points at or above −1.9°C due to significantly lower combined activity from all of their serum antifreeze proteins than found in the High-Antarctic Zone icefish.  相似文献   

2.
Antifreeze proteins depress the non-equilibrium freezing point of aqueous solutions, but only have a small effect on the equilibrium melting point. This difference between the freezing and melting points has been termed thermal hysteresis activity (THA). THA identifies the presence and relative activity of antifreeze proteins. Two antifreeze protein cDNAs, dafp-1 and dafp-4, encoding two self-enhancing (have a synergistic effect on THA) antifreeze proteins (DAFPs) from the beetle Dendroides canadensis, were introduced into the genome of Arabidopsis thaliana via Agrobacterium-mediated floral dip transformation. Southern blot analysis indicated multiple insertions of transgenes. Both DAFP-1 and/or DAFP-4 were expressed in transgenic A. thaliana as shown by RT-PCR and Western blot. Apoplastic fluid from T 3 DAFP-1 + DAFP-4-producing transgenic A. thaliana exhibited THA in the range of 1.2–1.35°C (using the capillary method to determine THA), demonstrating the presence of functioning antifreeze proteins (with signal peptides for extracellular secretion). The freezing temperature of DAFP-1 + DAFP-4-producing transgenic A. thaliana was lowered by approximately 2–3°C compared with the wild type.  相似文献   

3.
《Cryobiology》2009,58(3):292-296
A lipoprotein-like antifreeze protein (type IV AFP) has previously been isolated only from the blood plasma of the longhorn sculpin. However, the plasma antifreeze activity in all individuals of this species tested from Newfoundland and New Brunswick waters ranges from low to undetectable. A close relative of the longhorn sculpin, the shorthorn sculpin, does have appreciable antifreeze activity in its blood but this is virtually all accounted for by the α-helical, alanine-rich type I AFP, other isoforms of which are also present in the skin of both fishes. We have characterized a putative ortholog of type IV AFP in shorthorn sculpin by cDNA cloning. This 12.2-kDa Gln-rich protein is 87% identical to the longhorn sculpin’s type IV AFP. Recombinant versions of both orthologs were produced in bacteria and shown to have antifreeze activity. Immunoblotting with antibodies raised to type IV AFP shows this protein present in longhorn sculpin plasma at levels of less than 100 μg/mL, which are far too low to protect the blood from freezing at the temperature of icy seawater. This confirms the results of direct antifreeze assays on the plasmas. It appears that type IV AFP has the potential to develop as a functional antifreeze in these fishes but may not have been selected for this role because of the presence of type I AFP. Consistent with this hypothesis is the observation that the type IV AFP gene has not been amplified the way functional antifreeze protein genes have in all other species examined.  相似文献   

4.
Many Antarctic notothenioid species endemic to the Seasonal Pack-ice Zone have converged on adult blood serum freezing points that are several tenths of a degree above the freezing point of seawater. While these fishes share high adult serum freezing points, the development of their freeze avoidance during ontogeny has not been studied. We investigated this in wild caught juveniles of one such species, Chaenocephalus aceratus (family Channichthyidae), using blood serum antifreeze activity as a proxy for their freeze avoidance. Juvenile serum antifreeze activity was significantly below that of adults through the oldest year 2+ specimens collected. This increased at an estimated rate of 0.368 × 10−3 ± 0.405 × 10−4°C day−1 which, if sustained, would leave C. aceratus below their adult serum antifreeze activity levels of 0.57 ± 0.08°C until 4.2 years after hatching. Underlying the 2.7-fold increase in their serum antifreeze activity from late year 0+ juveniles to adults was an even greater 10.4-fold increase in the concentration of their serum antifreeze glycopeptides, which increased proportionally across all of their serum AFGP size isoforms. With insufficient antifreeze activity to avoid freezing in the ice-laden surface waters, both adult and juvenile C. aceratus are most likely restricted to the year round ice-free waters where a metastable supercooled state can be maintained.  相似文献   

5.
A re-evaluation of the role of type IV antifreeze protein   总被引:1,自引:0,他引:1  
A lipoprotein-like antifreeze protein (type IV AFP) has previously been isolated only from the blood plasma of the longhorn sculpin. However, the plasma antifreeze activity in all individuals of this species tested from Newfoundland and New Brunswick waters ranges from low to undetectable. A close relative of the longhorn sculpin, the shorthorn sculpin, does have appreciable antifreeze activity in its blood but this is virtually all accounted for by the α-helical, alanine-rich type I AFP, other isoforms of which are also present in the skin of both fishes. We have characterized a putative ortholog of type IV AFP in shorthorn sculpin by cDNA cloning. This 12.2-kDa Gln-rich protein is 87% identical to the longhorn sculpin’s type IV AFP. Recombinant versions of both orthologs were produced in bacteria and shown to have antifreeze activity. Immunoblotting with antibodies raised to type IV AFP shows this protein present in longhorn sculpin plasma at levels of less than 100 μg/mL, which are far too low to protect the blood from freezing at the temperature of icy seawater. This confirms the results of direct antifreeze assays on the plasmas. It appears that type IV AFP has the potential to develop as a functional antifreeze in these fishes but may not have been selected for this role because of the presence of type I AFP. Consistent with this hypothesis is the observation that the type IV AFP gene has not been amplified the way functional antifreeze protein genes have in all other species examined.  相似文献   

6.
Summary Antifreeze glycoproteins have been isolated from the Antarctic Nototheniid Trematomus hansoni and the Chaenichthyid species Chionodraco hamatus and Chaenocephalus aceratus. Their molecular weights range from 7,400–62,000 Daltons. The amino acid and sugar composition of these glycoproteins indicate that they consist of the same subunits which are known from related Nototheniids. In the Arctic-boreal sculpin Myoxocephalus scorpius two antifreeze peptides with a molecular weight of 6,000–7,000 Dalton could be isolated from the skin, which is likely to act as a barrier against initiation of ice propagation during contact with ice crystals in the water.  相似文献   

7.
Antifreeze proteins (AFPs) adsorb to ice crystals and inhibit their growth, leading to non-colligative freezing point depression. Crops like spring wheat, that are highly susceptible to frost damage, can potentially be made frost tolerant by expressing AFPs in the cytoplasm and apoplast where ice recrystallisation leads to cellular damage. The protein sequence for HPLC-6 α-helical antifreeze protein from winter flounder was rationally redesigned after removing the prosequences in the native protein. Wheat nuclear gene preferred amino acid codons were used to synthesize a recombinant antifreeze gene, rAFPI. Antifreeze protein was targeted to the apoplast using a Murine leader peptide sequence from the mAb24 light chain or retained in the endoplasmic reticulum using C-terminus KDEL sequence. The coding sequences were placed downstream of the rice Actin promoter and Actin-1 intron and upstream of the nopaline synthase terminator in the plant expression vectors. Transgenic wheat lines were generated through micro projectile bombardment of immature embryos of spring wheat cultivar Seri 82. Levels of antifreeze protein in the transgenic lines without any targeting peptide were low (0.06–0.07%). The apoplast-targeted protein reached a level of 1.61% of total soluble protein, 90% of which was present in the apoplast. ER-retained protein accumulated in the cells at levels up to 0.65% of total soluble proteins. Transgenic wheat line T-8 with apoplast-targeted antifreeze protein exhibited the highest levels of antifreeze activity and provided significant freezing protection even at temperatures as low as −7°C.  相似文献   

8.
The eelpout Zoarces viviparus is a common inhabitant in the shallow waters along the Danish coastline. Specimens were caught in the brackish (12-16 per thousand) Roskilde fjord where water temperatures range from >20 degrees C during summer to subzero in winter. The serum melting points found in Z. viviparus varied between -0.76 (September) to -0.94 degrees C (January). Eighty to 97% of the serum melting points could be attributed to sodium, chloride and potassium. Hysteresis freezing points showed seasonal variation varying from -0.83 (September) to -2.08 degrees C (February). Serum antifreeze activity showed a seasonal variation with high levels (>1.2 degrees C) in winter and low levels (<0.1 degrees C) during summer and autumn. Antifreeze proteins are responsible for this antifreeze activity. Antifreeze activity was also found in Z. viviparus during their embryological development in the female ovary. Embryo thermal hysteresis reached the maximum level (approx. 0.6 degrees C) during December and maintained this level until parturition in January. Antifreeze activity seems unaffected by diminishing ice crystal fractions at ice fractions below 0.1 whereas ice fractions above 0.1 caused a decline in antifreeze activity.  相似文献   

9.
Synopsis We tested the hypothesis that the mechanism of retention of tomcod, Microgadus tomcod, larvae and juveniles in the well-mixed part of the St. Lawrence Estuary is similar to that of sympatric smelt, Osmerus mordax, larvae who actively migrate to the surface during flood tides and to the bottom during ebb tides so as to minimize net downstream displacement. The vertical distribution of tomcod larvae and juveniles was documented during two 98-h sampling series at 2 anchor stations in June and July, 1986. An hourly index of the center of mass of fish in the water column calculated to take into account daytime net avoidance in surface waters suggested that tomcod remained deep in the water column and that their accumulation at the head of the estuary was the result of passive upstream transport by net residual circulation rather than active tidal migrations. For both series, depth of fish was inversely related to density of the water suggesting that the buoyancy of fish influenced their vertical distribution. Tomcod larvae and juveniles were advected by tidal currents. In June, larger larvae were found at low slack water indicating that they were located upstream of smaller larvae. In July, larger juveniles were located downstream of smaller juveniles, the difference in mean length between low and high slack water attaining 20 mm. Ontogenetic buoyancy changes may be responsible for these differences in the vertical distribution of tomcod. Comparisons of the early life-history stages of tomcod and smelt retained in the same area under the same hydrodynamical conditions indicate that more than one mechanism permits retention in a well-mixed estuary and that the observed species-specific patterns of vertical distribution are not simply interpretable as adaptations to retention.  相似文献   

10.
Expression of antifreeze proteins in transgenic plants   总被引:33,自引:0,他引:33  
The quality of frozen fruits and vegetables can be compromised by the damaging effects of ice crystal growth within the frozen tissue. Antifreeze proteins in the blood of some polar fishes have been shown to inhibit ice recrystallization at low concentrations. In order to determine whether expression of genes of this type confers improved freezing properties to plant tissue, we have produced transgenic tobacco and tomato plants which express genes encoding antifreeze proteins. Theafa3 antifreeze gene was expressed at high steady-state mRNA levels in leaves from transformed plants, but we did not detect inhibition of ice recrystallization in tissue extracts. However, both mRNA and fusion proteins were detectable in transgenic tomato tissue containing a chimeric gene encoding a fusion protein between truncated staphylococcal protein A and antifreeze protein. Furthermore, ice recrystallization inhibition was detected in this transgenic tissue.  相似文献   

11.
The freeze tolerant wood frog Rana sylvatica was studied to determine the impact of the freezing and thawing of this frog on the activity of γ-glutamyltranspeptidase in the liver. On exposure to ?2·5°C, for 1, 12 and 24 h, frogs were found to be cool, covered with ice crystals and frozen, respectively. Thawing for 24 h at 4°C recovered the frogs completely. A 45 per cent decrease in the liver weight: body weight ratio was notable after 1 h at ?2·5°C, suggestive of an early hepatic capacitance response. A glycemic response to freezing was observed: blood glucose levels exhibited a 55 per cent decrease after 1 h at ?2·5°C on cooling; a 10·5-fold increase after 12 h at ?2·5°C on the initiation of freezing; and a 22-fold increase after 24 h at ?2·5°C in the fully frozen state. Blood glucose levels remained elevated four-fold in the thawed state. Plasma insulin levels were increased twofold in the frozen state and 1·8-fold in the thawed state, while plasma ketone levels were increased 1·8-fold in the frozen state and 1·5-fold in the thawed state. Plasma total T3 levels were decreased by 22 per cent in the frozen state and normalized on thawing. In homogenates and plasma membranes isolated from the livers of Rana sylvatica, the activity of γ-glutamyltranspeptidase was found to be elevated at all stages of the freeze–thaw process. After 1, 12 and 24 h at ?2·5°C, activities were increased 2·5-, 2·3-, 2·4-fold respectively in the homogenates and 2·5-, 2·2-, 2·4-fold respectively in the plasma membranes. After thawing, activities were still increased 1·9-fold in both homogenates and plasma membranes. In homogenates prepared from the kidneys of Rana sylvatica, the activity of γ-glutamyltranspeptidase was increased 1·4-fold after 1 h at ?2·5°C after which it returned to normal. The role of thyroid hormone in producing the increase in γ-glutamyltranspeptidase in the liver of Rana sylvatica in response to freezing is discussed as is the significance of the enzyme increase in terms of hepatic cytoprotection and freeze tolerance.  相似文献   

12.
Summary The viscosities of blood from shorthorn sculpin (Myoxocephalus scorpius), longhorn sculpin (Myoxocephalus octodecemspinosus) and winter flounder (Pseudopleuronectes americanus) were compared using a cone-plate viscometer. Both species of sculpin were almost identical with respect to blood and plasma viscosity at the temperatures (0 and 15°C) and shear rates (2.3–90/s) examined. In contrast, the viscosities of winter flounder blood and plasma were considerably greater than those observed in the sculpins. This difference in blood viscosity between the shorthorn sculpin and the winter flounder persisted over the hematocrit range of 0 to 40% red blood cells. The viscosity of the plasma and the interactions between plasma proteins and red blood cells appeared to be the major reasons for the relatively high viscosity of the flounder blood. Although a proportion of the flounder blood viscosity was attributable to fibrinogen, other plasma proteins also appeared to play a significant role. The relatively low blood viscosity of the sculpin species may confer a circulatory advantage during periods of low water temperatures.  相似文献   

13.
14.
The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at ?12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.  相似文献   

15.
Abstract Diapause larvae of the European corn borer (Ostrinia nubilalis (Hubn.)) and the related Mediterranean noctuid Sesamia cretica Led. possess sufficient supercooling ability to avoid freezing over their normal environmental temperature ranges. In progressive chilling experiments (10 days acclimation at each 5° step in the temperature range from 15 to ?5°C), mean supercooling points (measured at a cooling rate of 0.1°C min?1) were lowered from ?20.4°C at 15°C to ?24.0°C at 5°C (lower lethal temperatures: c.?28°C) in O.nubilalis, compared with ?15.0 to ?17.2°C (lower lethal temperatures: ?15 to ?17°C respectively) in S.cretica. Concentrations of glycerol and trehalose determined by gas chromatography of whole body extracts were consistently higher in the former than in the latter species at both 15 and 5°C, and may be responsible for the deeper supercooling in O.nubilalis larvae. Acclimation to 5°C increased glycerol levels in O. nubilalis extracts compared with 15°C, and this was enhanced in larvae exposed for a further 10 days at each of 0 and ?5°C (glycerol being 438μmol ml?1 body water). Haemolymph glycerol concentrations showed a similar pattern to whole body extracts in this species. Fat body glycogen was reduced during low temperature acclimation in both species. Body water contents did not change with acclimation in O.nubilalis, whilst S.cretica, containing significantly more water, lost c.7% during acclimation from 15 to 5°C. Haemolymph osmolalities increased during acclimation, especially in Ostrinia larvae, probably as a result of the accumulation of cryoprotectants. The majority of O.nubilalis larvae survived freezing under the conditions of the cooling experiments, whilst larvae of S.cretica did not, thereby confirming an element of freezing tolerance in the former.  相似文献   

16.
Antifreeze proteins (AFPs) were obtained from intercellular spaces of spruce needles Picea abies (L.) Karst. and Picea pungens Engelm. by vacuum infiltration with ascorbic acid, followed by centrifugation to recover the infiltrate. As shown by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), apoplastic proteins are accumulated in these spruce species as a group of 5–9 polypeptide bands. These proteins have a molecular mass of 7–80 kDa. The spruce AFPs have the ability to modify the growth of ice and thermal hysteresis, TH, caused by these AFPs was close to 2.0 °C at a concentration of 400 μg/ml. The antifreeze activity of proteins from these winter-hardy coniferous species showed a positive correlation with the concentration of proteins after cold acclimation of needle tissues. Apoplastic proteins from winter spruce needles exhibited antifreeze activity, whereas no such activity was observed in extracts from summer needles. When we examined the possible role of spruce AFPs in cryoprotection, we found that lactate dehydrogenase, LDH, activity was higher after freezing in the presence of AFPs compared with bovine serum albumin. Amino-terminal sequence comparisons indicated that a 27-kDa protein from both P. abies and P. pungens was similar to some pathogenesis-related proteins namely chitinases, also from conifer species. These results show that spruces produce AFPs that are secreted into the apoplast of needles. The accumulation of AFPs in extracellular spaces caused by seasonal cold acclimation during winter indicates that these proteins may play a role in the acquisition of freezing tolerance of needle cells in coniferous species.  相似文献   

17.
Evidence on occurrence in catches and characteristic of the spatial-bathymetric distribution and size indices of four species of Cottidae—frog sculpin Myoxocephalus stelleri, brightbelly sculpin Microcottus sellaris, antlered sculpin Enophrys diceraus, and furseal sculpin Stelgistrum stejnegeri—in summer-autumn months in the Okhotsk Sea waters off Kamchatka (site from 51°15′ to 57°20′ N, depths of 11–100 m) are provided. The first three species occur mainly in the northern part of the shelf above 54° N at depths smaller than 30–40 m within a comparatively well warmed surface water mass of seasonal modification at near-bottom temperature values above 6°C at various solid grounds. Maximum catches of S. stejnegeri were recorded only at a site of the western Kamchatka shelf from 54°00′ to 54°20′ N on pebbly-stony ground in a narrow bathy-metric range of 41–60 m on the boundary between the well warmed surface water mass of autumn modification and the cold intermediate water mass at a water temperature below 2°C. Evidence on the size-weight indices of the studied species of Cottidae in trawl catches in the Okhotsk Sea waters off Kamchatka in the study period is provided.  相似文献   

18.
Type I antifreeze proteins (AFPs) are alanine-rich α-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins—two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs. [Reviewing Editor: Dr. John Oakeshott]  相似文献   

19.
The shrub Chimonanthus praecox L. (wintersweet) which is native to Chinese montane forests produces its flowers in the midst of winter. This indicates that the floral organs of this species are adapted to growth and development under freezing temperatures. Here, we report the isolation and preliminary characterisation of a 33 kDa apoplastic antifreeze chitinase (CpCHT1) from the petals and its corresponding cDNA. The chitinase activity of CpCHT1 was confirmed by activity staining. Antifreeze activity was validated in terms of the formation of bipyramidal ice crystals and high thermal-hysteresis values. CpCHT1 was also found to affect the germination of fungal spores of four major plant pathogens. In addition, the gene and protein are expressed constitutively not only in flowers, but also in leaves, bark and root tissues. From these data we hypothesize that this protein is multifunctional and may protect wintersweet from freezing injury and provide nonspecific disease resistance.  相似文献   

20.
Freezing tolerance and avoidance in high-elevation Hawaiian plants   总被引:2,自引:1,他引:1  
Freezing resistance mechanisms were studied in five endemic Hawaiian species growing at high elevations on Haleakala volcano, Hawaii, where nocturnal subzero (°C) air temperatures frequently occur. Extracellular freezing occurred at around -5°C in leaves of Argyroxiphium sandwicense and Sophora chrysophylla, but these leaves can tolerate extracellular ice accumulation to -15°C and -12°C, respectively. Mucilage, which apparently acted as an ice nucleator, comprised 9 to 11% of the dry weight of leaf tissue in these two species. Leaves of Vaccinium reticulatum and Styphelia tameiameiae were also found to tolerate substantial extracellular freezing. Dubautia menziesii, on the other hand, exhibited the characteristics of permanent supercooling; a very rapid decline in liquid water content associated with simultaneous intracellular and extracellular freezing. However, in those species that tolerate extracellular freezing, the decline in liquid water content during freezing is relatively slow. Osmotic potential was lower at pre-dawn than at midday in four of the species studied. Nocturnal production of osmotically active solutes may have helped to prevent intracellular freeze dehydration as well as to provide non-colligative protection of cell membranes. Styphelia tameiameiae supercooled to -9·3°C and tolerated tissue freezing to below -15°C, a unique combination of physiological characteristics related to freezing. Tolerance of extracellular ice formation after considerable supercooling may have resulted from low tissue water content and a high degree of intracellular water binding in this species, as determined by nuclear magnetic resonance studies. The climate at high elevations in Hawaii is relatively unpredictable in terms of the duration of subzero temperatures and the lowest subzero temperature reached during the night. It appears that plants growing in this tropical alpine habitat have been under selective pressures for the evolution of freezing tolerance mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号