首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.  相似文献   

2.
Organ morphogenesis requires cellular shape changes and tissue rearrangements that occur in a precisely timed manner. Here, we show that zebrafish heart and soul (Has)/protein kinase C iota (PRKCi) is required tissue-autonomously within the myocardium for normal heart morphogenesis and that this function depends on its catalytic activity. In addition, we demonstrate that nagie oko (Nok) is the functional homolog of mammalian protein associated with Lin-seven 1 (Pals1)/MAGUK p55 subfamily member 5 (Mpp5), and we dissect its earlier and later functions during myocardial morphogenesis. Has/PRKCi and Nok/Mpp5 are required early for the polarized epithelial organization and coherence of myocardial cells during heart cone formation. Zygotic nok/mpp5 mutants have later myocardial defects, including an incomplete heart tube elongation corresponding with a failure of myocardial cells to correctly expand in size. Furthermore, we show that nok/mpp5 acts within myocardial cells during heart tube elongation. Together, these results demonstrate that cardiac morphogenesis depends on the polarized organization and coherence of the myocardium, and that the expansion of myocardial cell size contributes to the transformation of the heart cone into an elongated tube.  相似文献   

3.
Proper brain ventricle formation during embryonic brain development is required for normal brain function. Brain ventricles are the highly conserved cavities within the brain that are filled with cerebrospinal fluid. In zebrafish, after neural tube formation, the neuroepithelium undergoes a series of constrictions and folds while it fills with fluid resulting in brain ventricle formation. In order to understand the process of ventricle formation, and the neuroepithelial shape changes that occur at the same time, we needed a way to visualize the ventricle space in comparison to the brain tissue. However, the nature of transparent zebrafish embryos makes it difficult to differentiate the tissue from the ventricle space. Therefore, we developed a brain ventricle injection technique where the ventricle space is filled with a fluorescent dye and imaged by brightfield and fluorescent microscopy. The brightfield and the fluorescent images are then processed and superimposed in Photoshop. This technique allows for visualization of the ventricle space with the fluorescent dye, in comparison to the shape of the neuroepithelium in the brightfield image. Brain ventricle injection in zebrafish can be employed from 18 hours post fertilization through early larval stages. We have used this technique extensively in our studies of brain ventricle formation and morphogenesis as well as in characterizing brain morphogenesis mutants (1-3).Open in a separate windowClick here to view.(51M, flv)  相似文献   

4.
To identify genes required for development of the brain and somites, we performed a pilot screen of gynogenetic haploid zebrafish embryos produced from mothers mutagenized by viral insertion. We describe an efficient method to identify new mutations and the affected gene. In addition, we report the results of a small-scale screen that identified five genes required for brain development, including novel alleles of nagie oko, pou5f1, ribosomal protein L36, and n-cadherin, as well as a novel allele of the laminin g1 gene that is required for normal skeletal muscle fiber organization and somite patterning.  相似文献   

5.
Na(+),K(+) ATPase is an essential ion pump involved in regulating ionic concentrations within epithelial cells. The zebrafish heart and mind (had) mutation, which disrupts the alpha1B1 subunit of Na(+),K(+) ATPase, causes heart tube elongation defects and other developmental abnormalities that are reminiscent of several epithelial cell polarity mutants, including nagie oko (nok). We demonstrate genetic interactions between had and nok in maintaining Zonula occludens-1 (ZO-1)-positive junction belts within myocardial cells. Functional tests and pharmacological inhibition experiments demonstrate that Na(+),K(+) ATPase activity is positively regulated via an N-terminal phosphorylation site that is necessary for correct heart morphogenesis to occur, and that maintenance of ZO-1 junction belts requires ion pump activity. These findings suggest that the correct ionic balance of myocardial cells is essential for the maintenance of epithelial integrity during heart morphogenesis.  相似文献   

6.
The brain ventricular system is conserved among vertebrates and is composed of a series of interconnected cavities called brain ventricles, which form during the earliest stages of brain development and are maintained throughout the animal''s life. The brain ventricular system is found in vertebrates, and the ventricles develop after neural tube formation, when the central lumen fills with cerebrospinal fluid (CSF) 1,2. CSF is a protein rich fluid that is essential for normal brain development and function3-6.In zebrafish, brain ventricle inflation begins at approximately 18 hr post fertilization (hpf), after the neural tube is closed. Multiple processes are associated with brain ventricle formation, including formation of a neuroepithelium, tight junction formation that regulates permeability and CSF production. We showed that the Na,K-ATPase is required for brain ventricle inflation, impacting all these processes 7,8, while claudin 5a is necessary for tight junction formation 9. Additionally, we showed that "relaxation" of the embryonic neuroepithelium, via inhibition of myosin, is associated with brain ventricle inflation.To investigate the regulation of permeability during zebrafish brain ventricle inflation, we developed a ventricular dye retention assay. This method uses brain ventricle injection in a living zebrafish embryo, a technique previously developed in our lab10, to fluorescently label the cerebrospinal fluid. Embryos are then imaged over time as the fluorescent dye moves through the brain ventricles and neuroepithelium. The distance the dye front moves away from the basal (non-luminal) side of the neuroepithelium over time is quantified and is a measure of neuroepithelial permeability (Figure 1). We observe that dyes 70 kDa and smaller will move through the neuroepithelium and can be detected outside the embryonic zebrafish brain at 24 hpf (Figure 2).This dye retention assay can be used to analyze neuroepithelial permeability in a variety of different genetic backgrounds, at different times during development, and after environmental perturbations. It may also be useful in examining pathological accumulation of CSF. Overall, this technique allows investigators to analyze the role and regulation of permeability during development and disease.  相似文献   

7.
The midbrain-hindbrain boundary (MHB) is a highly conserved fold in the vertebrate embryonic brain. We have termed the deepest point of this fold the MHB constriction (MHBC) and have begun to define the mechanisms by which it develops. In the zebrafish, the MHBC is formed soon after neural tube closure, concomitant with inflation of the brain ventricles. The MHBC is unusual, as it forms by bending the basal side of the neuroepithelium. At single cell resolution, we show that zebrafish MHBC formation involves two steps. The first is a shortening of MHB cells to approximately 75% of the length of surrounding cells. The second is basal constriction, and apical expansion, of a small group of cells that contribute to the MHBC. In the absence of inflated brain ventricles, basal constriction still occurs, indicating that the MHBC is not formed as a passive consequence of ventricle inflation. In laminin mutants, basal constriction does not occur, indicating an active role for the basement membrane in this process. Apical expansion also fails to occur in laminin mutants, suggesting that apical expansion may be dependent on basal constriction. This study demonstrates laminin-dependent basal constriction as a previously undescribed molecular mechanism for brain morphogenesis.  相似文献   

8.
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.  相似文献   

9.
The subcommissural organ (SCO) and the floor plate (FP) secrete high molecular weight glycoproteins that polymerize in the form of the Reissner's fiber (RF). To study to what extent the absence of the FP affects the expression of these glycoproteins, we have investigated the brain and spinal cord of 48-h and 72-h wildtype and cyclops (cyc) mutant zebrafish larvae by using a polyclonal antiserum against bovine RF. Wildtype larvae showed immunoreactivity in the SCO at the dorsal forebrain-midbrain boundary. In the ventricle, over the SCO surface, thin immunoreactive fibers aggregated into an RF that ran along the third and fourth ventricles and the central canal of the spinal cord until, at its caudal end, the fiber disintegrated and formed a strongly immunoreactive massa caudalis that left the neural tube and invaded the surrounding tissues of the tail fin. The rostral end of the FP, lining the pontine flexure, was also strongly immunoreactive, as was the caudal third of the FP. Cyc mutants showed an immunoreactive SCO and fibrous material in the ventricle, but an RF was missing. There was no label in the ventral midline of the neural tube except in some specimens in which the caudal FP persisted and was immunoreactive. It is concluded that the product of the cyc gene is not required for the expression of SCO glycoproteins but for their polymerization into an RF in the brain ventricles.  相似文献   

10.
Polarization is a common feature of many types of cells, and we are beginning to understand how cells become polarized. The role of cell polarity in development and tissue morphogenesis, however, is much less well understood. Our previous analysis of the mosaic eyes (moe) mutations revealed that moe is required for retinal lamination and also suggested that zebrafish moe function is required in the retinal pigmented epithelium (RPE) for the proper localization of adjacent retinal cell divisions at the apical neuroepithelial surface. To understand the function of moe in the RPE, we cloned the moe locus and show that it encodes a novel FERM (for 4.1 protein, ezrin, radixin, moesin) domain-containing protein. Expression of moe in the eye, kidney, and brain reflects phenotypes found in moe(-) mutants, including RPE and retinal lamination defects, edema, and small or absent brain ventricles. We show that moe function is required for tight junction formation in the RPE. We suggest that moe may be a necessary component of the crumbs pathway that regulates apical cell polarity and also may play a role in photoreceptor morphogenesis.  相似文献   

11.
12.
One of the earliest stages of brain morphogenesis is the establishment of the neural tube during neurulation. While some of the cellular mechanisms responsible for neurulation have been described in a number of vertebrate species, the underlying molecular processes are not fully understood. We have identified the zebrafish homolog of protocadherin-19, a member of the cadherin superfamily, which is expressed in the anterior neural plate and is required for brain morphogenesis. Interference with Protocadherin-19 function with antisense morpholino oligonucleotides leads to a severe disruption in early brain morphogenesis. Despite these pronounced effects on neurulation, axial patterning of the neural tube appears normal, as assessed by in situ hybridization for otx2, pax2.1 and krox20. Characterization of embryos early in development by in vivo 2-photon timelapse microscopy reveals that the observed disruption of morphogenesis results from an arrest of cell convergence in the anterior neural plate. These results provide the first functional data for protocadherin-19, demonstrating an essential role in early brain development.  相似文献   

13.
Through the direct analysis of cell behaviors, we address the mechanisms underlying anterior neural tube morphogenesis in the zebrafish and the role of the cell adhesion molecule N-cadherin (N-cad) in this process. We demonstrate that although the mode of neurulation differs at the morphological level between amphibians and teleosts, the underlying cellular mechanisms are conserved. Contrary to previous reports, the zebrafish neural plate is a multi-layered structure, composed of deep and superficial cells that converge medially while undergoing radial intercalation, to form a single cell-layered neural tube. Time-lapse recording of individual cell behaviors reveals that cells are polarized along the mediolateral axis and exhibit protrusive activity. In N-cad mutants, both convergence and intercalation are blocked. Moreover, although N-cad-depleted cells are not defective in their ability to form protrusions, they are unable to maintain them stably. Taken together, these studies uncover key cellular mechanisms underlying neural tube morphogenesis in teleosts, and reveal a role for cadherins in promoting the polarized cell behaviors that underlie cellular rearrangements and shape the vertebrate embryo.  相似文献   

14.
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.  相似文献   

15.
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.  相似文献   

16.
A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.  相似文献   

17.
During vertebrate development, the hindbrain is transiently segmented into 7 distinct rhombomeres (r). Hindbrain segmentation takes place within the context of the complex morphogenesis required for neurulation, which in zebrafish involves a characteristic cross-midline division that distributes progenitor cells bilaterally in the forming neural tube. The Eph receptor tyrosine kinase EphA4 and the membrane-bound Ephrin (Efn) ligand EfnB2a, which are expressed in complementary segments in the early hindbrain, are required for rhombomere boundary formation. We showed previously that EphA4 promotes cell-cell affinity within r3 and r5, and proposed that preferential adhesion within rhombomeres contributes to boundary formation. Here we show that EfnB2a is similarly required in r4 for normal cell affinity and that EphA4 and EfnB2a regulate cell affinity independently within their respective rhombomeres. Live imaging of cell sorting in mosaic embryos shows that both proteins function during cross-midline cell divisions in the hindbrain neural keel. Consistent with this, mosaic EfnB2a over-expression causes widespread cell sorting and disrupts hindbrain organization, but only if induced at or before neural keel stage. We propose a model in which Eph and Efn-dependent cell affinity within rhombomeres serve to maintain rhombomere organization during the potentially disruptive process of teleost neurulation.  相似文献   

18.
The fate of the anterior neural ridge was studied by following the relative movements of simultaneous spot applications of DiI and DiO from stage 15 through stage 45. These dye movements were mapped onto the neuroepithelium of the developing brain whose shape was gleaned from whole-mount in situs to neural cell adhesion molecule and dissections of the developing nervous system. The result is a model of the cell movements that drive the morphogenesis of the forebrain. The midanterior ridge moves inside and drops down along the most anterior wall of the neural tube. It then pushes forward a bit, rotates ventrally during forebrain flexing, and gives rise to the chiasmatic ridge and anterior hypothalamus. The midanterior plate drops, forming the floor of the forebrain ventricle, and, keeping its place behind the ridge, it gives rise to the posterior hypothalamus or infundibulum. The midlateral anterior ridge slides into the lateral anterior wall of the neural tube and stretches laterally into the optic stalk and retina, and then rotates into a ventral position. The lateral anterior ridge converges to the most anterior part of the dorsal midline during neural tube closure, then rotates anteriorly, and gives rise to telencephalic structures. Whole-mount bromodeoxyuridine labeling at these stages showed that cell division is widespread and relatively uniform throughout the brain during the late neurula and early tailbud stages, but that during late tailbud stages cell division becomes restricted to specific proliferative zones. We conclude that the early morphogenesis of the brain is carried out largely by choreographed cell movements and that later morphogenesis depends on spatially restricted patterns of cell division. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
In this video, we demonstrate the method our lab has developed to analyze the cell shape changes and rearrangements required to bend and fold the developing zebrafish brain (Gutzman et al, 2008). Such analysis affords a new understanding of the underlying cell biology required for development of the 3D structure of the vertebrate brain, and significantly increases our ability to study neural tube morphogenesis. The embryonic zebrafish brain is shaped beginning at 18 hours post fertilization (hpf) as the ventricles within the neuroepithelium inflate. By 24 hpf, the initial steps of neural tube morphogenesis are complete. Using the method described here, embryos at the one cell stage are injected with mRNA encoding membrane-targeted green fluorescent protein (memGFP). After injection and incubation, the embryo, now between 18 and 24 hpf, is mounted, inverted, in agarose and imaged by confocal microscopy. Notably, the zebrafish embryo is transparent making it an ideal system for fluorescent imaging. While our analyses have focused on the midbrain-hindbrain boundary and the hindbrain, this method could be extended for analysis of any region in the zebrafish to a depth of 80-100 μm.Open in a separate windowClick here to view.(44M, flv)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号