首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report results of karyotype analyses using nine species of Maianthemum from China. The species, except M. atropurpureum (with 2n=72), had 2n=36, and the results support the earlier suggestion that Maianthemum has x=18 with 2n=36 in most species. The species examined, however, showed marked differences in karyotype, particularly in the numbers of metacentric, submetacentric, and acrocentric chromosomes as well as in the number of satellites. In addition, we distinguished three different modes based on the number of clear gaps in chromosome length variation: unimodal, bimodal, and trimodal. The unimodal variation (with no gap) was found in M. dahuricum and M. atropurpureum, the bimodal variation (with one gap) in M. tatsienense, and the trimodal variation (with two gaps) in M. bifolium, M. forrestii, M. japonicum, M. henryi, M. purpureum, and M. lichiangense. In the trimodal variation, the positions of the two gaps may differ from species to species. In addition, the frequency of acrocentric chromosomes per complement was generally higher in the trimodal variation than in the unimodal and bimodal variations. Results of our analyses, which had not been clearly presented prior to this, may provide a better understanding of species evolution in the tribe Polygonatae.  相似文献   

2.
The interrelationships within theHeliantheae s. lato and the closely relatedEupatorieae are analyzed and discussed. The basis to this discussion is a cladistic analysis of 141 morphological characters (172 apomorphic states) scored for 97 genera. TheHeleniae s. lato, a subgroup of theHeliantheae s. lato, are paraphyletic, and a monophyletic group corresponding largely to theHeliantheae s. str. is recognized. TheEcliptinae sensuRobinson are polyphyletic. TheCoreopsidinae form an ingroup in theHeliantheae s. str. TheTageteae (Pectidinae) and theMadieae (Madiinae) are two separate branches within the helenioid assemblage of taxa.  相似文献   

3.
Hyaloscyphaceae is the largest family in Helotiales, Leotiomycetes. It is mainly characterized by minute apothecia with well-differentiated hairs, but its taxonomic delimitation and infrafamilial classification remain ambiguous. This study performed molecular phylogenetic analyses using multiple genes including the ITS-5.8S rDNA, the D1–D2 region of large subunit of rDNA, RNA polymerase II subunit 2, and the mitochondrial small subunit. The primary objective was to evaluate the phylogenetic utility of morphological characters traditionally used in the taxonomy of Hyaloscyphaceae through reassessment of the monophyly of this family and its genera. The phylogenetic analyses inferred Hyaloscyphaceae as being a heterogeneous assemblage of a diverse group of fungi and not supported as monophyletic. Among the three tribes of Hyaloscyphaceae only Lachneae formed a monophyletic lineage. The presence of hairs is rejected as a synapomorphy, since morphologically diversified hairs have originated independently during the evolution of Helotiales. The true- and false-subiculum in Arachnopezizeae are hypothesized to have evolved through different evolutionary processes; the true-subiculum is likely the product of a single evolutionary origin, while the false-subiculum is hypothesized to have originated multiple times. Since Hyaloscyphaceae sensu lato was not resolved as monophyletic, Hyaloscyphaceae sensu stricto is redefined and only applied to the genus Hyaloscypha.  相似文献   

4.
RFLPs of cpDNA were examined for 18 species ofAster, six species ofKalimeris, two species ofMiyamayomena and one species and one variety ofHeteropappus from Japan, using 16 restriction endonucleases. Approximately 275 restriction sites were surveyed, and a total of 74 restriction site mutations was detected, and 31 of these were phylogenetically informative. Sixteen most parsimonious trees constructed from Wagner parsimony analysis indicated the polyphyly ofKalimeris andMiyamayomena sensu Kitamura;K. miqueliana belongs to a different clade from the remaining species ofKalimeris, and two species ofMiyamayomena did not make a single clade. This result suggests that the shortening or loss of pappus have happened parallelly in different evolutionary lineages. We must be careful to assess the pappus character in taxonomy and phylogeny, and it is desirable to examine their phylogenetic relationships using a molecular data.  相似文献   

5.
(1) The ability to produce cephalodia is usually a genus-specific character in lichens. (2)Lecidea shushanii Thoms., is a member of the genusTephromela, closely related toT. aglaea. It is not clear, whether or not the cephalodia of this taxon are true cephalodia or colonies of epiphytic cyanobacteria and whether or notLecidea shushanii is an independent species. (3)Lecidea dovrensis Nyl., is, in contrast to the traditional concept, not conspecific withLecidea alpestris Sommerf., but an earlier name forLecidea pallida Th. Fr. (4)Lecidea dovrensis is described in some detail. Chemically the species is characterized by the presence of isousnic acid (previously unknown in lecideoid lichens). It is restricted to areas north of the 60th parallel with an oceanic climate. (5) In connection with the attempt to clarify the taxonomic relationships ofLecidea dovrensis, figures of ascus apical structures of the following species are given (marked by an asterisk are genera where we found discrepancies with published data):Austrolecia antarctica, Catillaria chalybeia, Lecidea alpestris, L. caesioatra, L. limosa, Lecidoma demissum, Koerberiella wimmeriana, Micarea assimilata, M. crassipes, M. melaenida, M. prasina, Pilophorus robustus, Placodiella olivacea, Placolecis opaca, Porpidia trullisata, Protoblastenia rupestris, Psilolechia lucida, Psorula rufonigra, Squamarina gypsacea, Xanthopsorella texana. (6) Among crustaceous lichens we find no groups related toLecidea dovrensis. We supportTimal's concept of including this species in the genusPilophorus. Pilophorus, as well asLecidea dovrensis is characterized by the same ascus type, by a similar structure of thallus, cephalodia, paraphyses, and ascocarp (although there is no pseudopodetium developed inLecidea dovrensis), and the presence of isousnic acid. In addition, both taxa are restricted to cool oceanic climates and non-calciferous substrates. The following combination is proposed:Pilophorus dovrensis (Nyl.)Timdal, Hertel & Rambold, comb. nova. (7) The species of theLecidea alpestris-group form an independent genus, probably near toAustrolecia Hertel.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   

6.
The monophyly and evolution of Cynara was investigated using ITS sequence data. Parsimony analysis supports the monophyly of Cynara sensu lato, i.e. including the distinctive taxa C. humilis and C. tournefortii. This contradicts the recent decision to create a new monotypic genus Arcyna for C. tournefortii. A hypothesised close relationship between C. tournefortii and Silybum Adans. is also refuted. Four of the five species of Cynara, for which multiple accessions were sequenced, were shown to be monophyletic but C. baetica was found to be non-monophyletic. Free energy estimates for ITS1 secondary structure and conservation of the 5.8S region suggest that this is not due to the occurrence of pseudogenes. Hybridisation is a plausible explanation but evidence for the likely parents involved in such an event is inconclusive.  相似文献   

7.
Cassia L. sensu lato, a large heterogeneous genus of flowering plants, occurs naturally in the tropics around the world. Recent works based on floral morphology have supported a division of this genus into three genera, namely Cassia L. s. str., Chamaecrista Moench and Senna Mill. In order to investigate this new classification, 508 specimens of 18 taxa of the genus Cassia s.l. grown in Thailand were analyzed using cluster analysis and canonical discriminant analysis. The total 32 vegetative and reproductive morphological characters were employed in these analyses. In cluster analysis, Cassia s.l. can be separated into four groups, respectively viz. Chamaecrista, Senna alata, Senna and Cassia s /str. The four-cluster grouping is discussed. From a canonical discriminant analysis using the four-cluster grouping as a priori groups, it can be concluded that Cassia s. str., Senna, and Chamaecrista are indeed distinct taxa. The three most important characters that separate the three genera are filament length, fruit length, and ovary stalk length. These quantitative characters, together with some qualitative characters, were useful in constructing an identification key to these genera. Among the three genera, it was also found that Senna is rather a heterogeneous taxon. The difference between the studied species was discussed.  相似文献   

8.
Kim JH  Kim DK  Forest F  Fay MF  Chase MW 《Annals of botany》2010,106(5):775-790

Background

Previous phylogenetics studies of Asparagales, although extensive and generally well supported, have left several sets of taxa unclearly placed and have not addressed all relationships within certain clades thoroughly (some clades were relatively sparsely sampled). One of the most important of these is sampling within and placement of Nolinoideae (Ruscaceae s.l.) of Asparagaceae sensu Angiosperm Phylogeny Group (APG) III, which subfamily includes taxa previously referred to Convallariaceae, Dracaenaaceae, Eriospermaceae, Nolinaceae and Ruscaceae.

Methods

A phylogenetic analysis of a combined data set for 126 taxa of Ruscaceae s.l. and related groups in Asparagales based on three nuclear and plastid DNA coding genes, 18S rDNA (1796 bp), rbcL (1338 bp) and matK (1668 bp), representing a total of approx. 4·8 kb is presented. Parsimony and Bayesian inference analyses were conducted to elucidate relationships of Ruscaceae s.l. and related groups, and parsimony bootstrap analysis was performed to assess support of clades.

Key Results

The combination of the three genes results in the most highly resolved and strongly supported topology yet obtained for Asparagales including Ruscaceae s.l. Asparagales relationships are nearly congruent with previous combined gene analyses, which were reflected in the APG III classification. Parsimony and Bayesian analyses yield identical relationships except for some slight variation among the core asparagoid families, which nevertheless form a strongly supported group in both types of analyses. In core asparagoids, five major clades are identified: (1) Alliaceae s.l. (sensu APG III, Amarylidaceae–Agapanthaceae–Alliaceae); (2) Asparagaceae–Laxmanniaceae–Ruscaceae s.l.; (3) Themidaceae; (4) Hyacinthaceae; (5) Anemarrhenaceae–Behniaceae–Herreriaceae–Agavaceae (clades 2–5 collectively Asparagaceae s.l. sensu APG III). The position of Aphyllanthes is labile, but it is sister to Themidaceae in the combined maximum-parsimony tree and sister to Anemarrhenaceae in the Bayesian analysis. The highly supported clade of Xanthorrhoeaceae s.l. (sensu APG III, including Asphodelaceae and Hemerocallidaceae) is sister to the core asparagoids. Ruscaceae s.l. are a well-supported group. Asparagaceae s.s. are sister to Ruscaceae s.l., even though the clade of the two families is weakly supported; Laxmanniaceae are strongly supported as sister to Ruscaceae s.l. and Asparagaceae. Ruscaceae s.l. include six principal clades that often reflect previously named groups: (1) tribe Polygonateae (excluding Disporopsis); (2) tribe Ophiopogoneae; (3) tribe Convallarieae (excluding Theropogon); (4) Ruscaceae s.s. + Dracaenaceae + Theropogon + Disporopsis + Comospermum; (5) Nolinaceae, (6) Eriospermum.

Conclusions

The analyses here were largely conducted with new data collected for the same loci as in previous studies, but in this case from different species/DNA accessions and greater sampling in many cases than in previously published analyses; nonetheless, the results largely mirror those of previously conducted studies. This demonstrates the robustness of these results and answers questions often raised about reproducibility of DNA results, given the often sparse sampling of taxa in some studies, particularly the earliest ones. The results also provide a clear set of patterns on which to base a new classification of the subfamilies of Asparagaceae s.l., particularly Ruscaceae s.l. (= Nolinoideae of Asparagaceae s.l.), and examine other putatively important characters of Asparagales.  相似文献   

9.
The controversy over generic delimitation between Maianthemum and Smilacina has been unresolved for almost two centuries. Distributions of the two genera in the Northern Hemisphere also provide an excellent opportunity to further understand the disjunct distribution patterns of the North Temperate Flora. To test the generic delimitation and to investigate biogeographic patterns, we sequenced the partial 3′ matK gene and trnK 3′ intron of chloroplast DNA for 38 accessions, representing three species of Maianthemum, seven species of Smilacina, and four outgroup taxa. Maximum parsimony and neighbor-joining trees showed reciprocal monophyly of the two genera with very weak bootstrap support for each genus. Within each genus, relationships among species were poorly resolved. Despite its low resolution, this study shows that eastern Asian species of Smilacina and Maianthemum are generally more closely related to eastern North American taxa than to western ones. More detailed sampling of Smilacina from different geographic regions, especially from the two centers of diversity (southeastern Asia and Mexico/Central America), and additional sequences from cpDNA, as well as from nuclear DNA, are needed to test the reciprocal monophyly of the two genera and also to understand current distributions of disjunct taxa.  相似文献   

10.
Algae are important food resources of the larvae of the African malaria vectors, Anopheles gambiae Giles and Anopheles arabiensis Patton (Anopheles gambiae sensu lato), and other zooplankton, but empirical evidence remains meager about the agal flora in ephemeral water bodies. The animals present in natural aquatic habitats in western Kenya were sampled from July to November 2002 to study abiotic and biotic environmental factors determining A. gambiae sl larval abundance. The five highest concentrations of third and fourth instars and pupae (hereafter referred to as old-stage larvae) were sampled in conjunction with the unicellular epizoic green algae, Rhopalosolen species (Chlorophyta; Chlorophyceae). Canonical correspondence analysis revealed that the presence of Rhopalosolen species was the most important determinant of the animal assemblage. The density of old-stage A. gambiae sl larvae was positively correlated with the presence of Rhopalosolen species, but the density of first and second instars of A. gambiae sl was not. The water bodies with Rhopalosolen sp. yielded larger mosquitoes in spite of the higher density of larvae. We demonstrated that the productivity of water bodies in terms of the larvae of malaria vectors can differ in magnitude depending on the agal flora. We discuss phytoplankton as a regulator of mosquito larval populations.  相似文献   

11.
Meiotic pairing behaviour in 19 interspecificElymus hybrids is reported and discussed. The hybrids were made between four species belonging to theE. semicostatus group of sect.Goulardia, viz.,E. semicostatus, E. abolinii, E. fedtschenkoi, andE. panormitanus (all 2n = 28), andElymus species of seven different sections, viz., sect.Clinelymiopsis:E. caucasicus (2n = 28); sect.Elymus:E. sibiricus (2n = 28); sect.Goulardia:E. caninus (2n = 28),E. trachycaulus (2n = 28), andE. tsukushiensis (2n = 42); sect.Hyalolepis:E. batalinii (2n = 42); sect.Hystrix:E. hystrix (2n = 28); sect.Macrolepis:E. canadensis (2n = 28); and sect.Turczaninovia:E. dahuricus (2n = 42). Chromosomal pairing at meiotic metaphase I indicated that the species of theE. semicostatus group are genomically closer to the tetraploidE. caucasicus and the hexaploid species, regardless of sectional origin, than to the other tetraploid species of sectionGoulardia. Highest meiotic pairing was found in hybrids involvingE. caucasicus, E. tsukushiensis, andE. dahuricus. The presence of pairing regulating genes inE. abolinii is suspected.  相似文献   

12.
Most lichens of the family Teloschistaceae (Ascomycota) produce yellow-orange-red anthraquinone pigments. However, the genus Pyrenodesmia encompasses species in which anthraquinones are absent and replaced by a gray pigment Sedifolia-gray. It was shown recently that these species are related to taxa with both anthraquinones and Sedifolia-gray (Caloplaca xerica group, C. haematites group, and C. cretensis) and to species with a brown pigment instead of both anthraquinones and Sedifolia-gray (C. demissa, C. obscurella, and C. reptans). Nevertheless, relationships between mentioned anthraquinone-containing and anthraquinone-lacking species remained unclear. In total, 8 DNA loci from 41 species were used here to resolve these uncertainties. We concluded that C. demissa, C. obscurella, and C. reptans are rather distant from the core of Pyrenodesmia, and we place them outside of Pyrenodesmia sensu lato. Within Pyrenodesmia sensu lato, three lineages were revealed and recognized on a generic level: the genus Pyrenodesmia sensu stricto (21 species), the genus Kuettlingeria (14 species), which is resurrected here, and the genus Sanguineodiscus (4 species), which is newly described here. The genus Pyrenodesmia includes taxa that never contain anthraquinones, but Sedifolia-gray. It matches with the former C. variabilis group. Taxa of the genera Kuettlingeria and Sanguineodiscus have anthraquinones in their apothecia and Sedifolia-gray in their thalli. The genus Kuettlingeria includes the former C. xerica group plus C. cretensis and C. diphyodes. The genus Sanguineodiscus includes the former C. haematites group and C. bicolor. The identity of Kuettlingeria (Caloplaca) diphyodes was clarified and the name Pyrenodesmia helygeoides was resurrected. Twenty-four new combinations were proposed.  相似文献   

13.
14.
To evaluate the sectional classification in Carex, subgenus Vignea, the ITS region of 58 species of 20 sections was analyzed with Neighbor Joining (NJ) and Markov chain Monte Carlo (MCMC) methods. Sections Dioicae, Physodeae and Ovales are found to be monophyletic, with C. bohemica well integrated in the section Ovales. Section Heleonastes turns out to be monophyletic, if C. canescens is treated separately in section Canescentes. Section Elongatae is monophyletic, but C. remota is placed in section Remotae and C. bromoides in section Deweyanae. In both analyses, six representatives of section Arenariae cluster together in a terminal group, whereas C. disticha, C. repens and C. siccata form a basal cluster. C. maritima, as the only member of section Incurvae, shares this basal position. C. chordorrhiza is ascribed to section Chordorrhizeae and not ascribed to the paraphyletic section Divisae. C. vulpina and C. otrubae are assigned to section Vulpinae and separated from the heterogeneous section Stenorhynchae. The other members of sections Divisae, Muehlenbergianae, Multiflorae and Stenorhynchae are scattered throughout the trees. The representatives of section Foetidae are dispersed in both analyses, section Paniculatae appears to be non-monophyletic in the molecular results as well. The subgenus appears subdivided in at least four larger subgroups in all analyses. Whereas these subgroups are strongly supported, the relationships between these subgroups remain only poorly resolved.  相似文献   

15.
We present phylogenetic analyses of Malpighiales, which are poorly understood with respect to relationships within the order, using sequences from rbcL, atpB, matK and 18SrDNA from 103 genera in 23 families. From several independent and variously combined analyses, a four-gene analysis using all sequence data provided the best resolution, resulting in the single most parsimonious tree. In the Malpighiales [bootstrap support (BS) 100%], more than eight major clades comprising a family or group of families successively diverged, but no clade containing more than six families received over 50% BS. Instead, ten terminal clades that supported close relationships between and among families (>50% BS) were obtained, between, for example, Balanopaceae and Chrysobalanaceae; Lacistemataceae and Salicaceae; and Phyllanthaceae and Picrodendraceae. The monophyly of Euphorbiaceae sens. str. were strongly supported (BS 100%), but its sister group was unclear. Euphorbiaceae sens. str. comprised two basally diverging clades (BS 100%): one leading to the Clutia group (Chaetocarpus, Clutia, Pera and Trigonopleura), and the other leading to the rest of the family. The latter shared a palisadal, instead of a tracheoidal exotegmen as a morphological synapomorphy. While both Acalyphoideae (excluding Dicoelia and the Clutia group) and Euphorbioideae are monophyletic, Crotonoideae were paraphyletic, requiring more comprehensive analyses.  相似文献   

16.
A phylogenetic analysis of Euphorbiaceae sensu stricto is presented using sequences from rbcL, atpB, matK and 18S rDNA from 85 species and 83 genera. The combined analysis of four molecular markers resulted in only one most parsimonious tree and also generated new supported clades, which include Euphorbioideae + Acalyphoideae s.s., subclades A2 + A3, subclades A5 + A6 and a clade uniting subclades A2–A8 within Acalyphoideae s.s. A palisadal exotegmen is a possible synapomorphy for all the Euphorbiaceae, except for the subfamily Peroideae. The presence of vascular bundles in the inner integument and a thick inner integument were shown to be synapomorphies for the clade of inaperturate and articulated crotonoids and for the large clade of Euphorbioideae, Acalyphoideae s.s., inaperturate and articulated crotonoids, respectively. Characters of the aril and vascular bundles in the outer integument are discussed. The selected embryological characters were seen to be highly correlated with the molecular phylogeny. When the results of molecular phylogenetic analysis of a previous study and this study were adjusted along with the selected embryological characters, all clades within Euphorbiaceae were supported except for a clade comprising Euphorbioideae + Acalyphoideae s.s. + inaperturate crotonoids + articulated crotonoids + Adenoclineae s.l. and a clade uniting subclades A4–A8 within Acalyphoideae s.s. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
DNA polymorphisms generated by the random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) were used to analyse 41 isolates investigated in the EuropeanFusarium sambucinum Project (EFSP). Employing ten arbitrary (10-mer) oligonucleotides and simple repeat sequences (M13, (GACA)4) as single primers, informative banding patterns typical for identifying European populations ofFusarium sambucinum Fuckel s. str.,F. torulosum (Berk. & Curt.) Nirenberg andF. venenatum Nirenberg were obtained.  相似文献   

18.
Species within three families of basal angiosperms (Trimeniaceae, Winteraceae, Monimiaceae) illustrate differences and similarities in pollen within a species, between species and between genera. Trimenia papuana (Trimeniaceae) has dimorphic pollen (inaperturate, polyforate), each confined to different individual plants. Other species have either disulculate or polyforate pollen. Evolution seems to be from disulculate to inaperturate to polyforate. Present-day Winteraceae have pollen in permanent tetrads except four species of Zygogynum with monads. Why? Did such monads appear as fossils before tetrads in Winteraceae? Molecular studies of Takhtajania perrieri indicate it is basal but its unique bicarpellate unilocular gynoecium seems derived. Although Hedycarya arborea and Kibaropsis caledonica have near-identical permanent pollen tetrads, many other features are very different. Hedycarya species have permanent tetrads or inaperturate monads with spinulose, `starry' or other sculpturing, and it is suggested this and recent molecular data indicate further studies are needed to determine generic limits.  相似文献   

19.
The study of reproductive isolation between populations, combined with estimates of genetic divergence, provides important insights into mechanisms of speciation. In this study, sixteen morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta) were brought into culture to study their phylogenetic relationships and pre- and postzygotic reproductive barriers. An ITS rDNA phylogeny was congruent with morphology and divided the clones into three groups ('slender', 'robust' and 'labile'), pointing to the presence of several species in E. bilunaris. Whereas most strains had a heterothallic mating system, four 'labile' clones displayed apomictic behaviour. A further 'labile' clone had a heterothallic mating behaviour, however, suggesting a very recent origin for apomixis. Despite high sequence divergence, hybridization occurred between clones belonging to different groups, but was 20-400 times less frequent than in intra-group matings. F1 hybrids had an intermediate morphology and were almost completely sterile; gamete formation was generally arrested in the early stages of meiosis I. The ITS divergence of 11.5-12.3% between the 'robust' and 'slender' clones seems to represent an upper limit of divergence in which cell pairing, gamete formation and auxosporulation are still possible but heavily reduced, and where hybrid sterility has already evolved.  相似文献   

20.
Previous molecular phylogenetic analyses have demonstrated that Saxifragaceae sensu lato are polyphyletic, with component lineages scattered throughout the eudicots. As part of our effort to elucidate the relationships of members of Engler and Prantl's Saxifragaceae s. l., we undertook a molecular systematic study of subfamily Brexioideae, which comprises three genera:Brexia, Ixerba, andRoussea. Not all taxonomic treatments have concurred, however, in placing these genera together. To elucidate relationships among these three genera as well as their relationships to other angiosperms we constructed large data sets ofrbcL, 18S rDNA, andrbcL + 18S rDNA sequences. Our phylogenetic analyses indicate clearly that Brexioideae are polyphyletic.Brexia is part of a celastroid clade that also includesParnassia, Lepuropetalon, and Celastraceae.Ixerba appears as sister to a large eurosid I clade;Roussea appears as part of Asterales. Molecular data, therefore, indicate that Brexioideae are a polyphyletic assemblage and component genera should ultimately be incorporated into other groups. Our studies continue to demonstrate the polyphyly not only Saxifragaceae s. l., but also of its constituent subfamilies.The first author would like to dedicate this paper to Kurt Schuchart, a good friend who passed away during this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号