首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.  相似文献   

2.
Major T-cell responses in multiple sclerosis   总被引:1,自引:0,他引:1  
Evidence is emerging that the major T- and B-cell response in multiple sclerosis (MS) is directed to a region of myelin basic protein (MBP) between residues 84 and 103. In rodent models of MS, immunization to this component of MBP evokes experimental autoimmune encephalomyelitis (EAE). T cells found in EAE lesions show similarities in the VJ and VDJ regions of their alpha and beta chains with T cells in MS lesions, and with T cells that are specific for MBPp84-103 isolated from patients with MS. If this region of MBP is critical in the pathogenesis of MS, then therapy aimed at controlling the immune response to this immunodominant region of MBP may be beneficial in treating MS.  相似文献   

3.
Multiple sclerosis (MS) is a severe autoimmune neurodegenerative disease. It attacks mainly young people. The development of new approaches to MS treatment is a challenge to modern immunology and pharmacology. In the present study, a high therapeutic efficacy of immunodominant peptides of myelin basic protein (MBP) incorporated into unilamellar mannosylated liposomes in the development of experimental autoimmune encephalomyelitis (EAE) is demonstrated in DA rats. MBP is a component of the oligodendrocyte membrane, which forms the axonal sheath. This protein is among the major autoantigens in MS. We have analyzed the binding pattern of anti-MBP autoantibodies from MS patients using a previously designed MBP epitope library. Utilizing the same approach, we have investigated the pool of anti-MBP antibodies from SJL/J and C57BL/6mice and DA rats with EAE. According to the autoantibody binding patterns, the rodent model most closely mimicking MS is EAE in DA rats. We have chosen three immunodominant MBP fragments encapsulated in unilamellar mannosylated liposomes for the treatment of the verified DA rodent model. MBP fragment 46?C62 is the most efficient in mitigating the first EAE attack, whereas MBP 124?C139 and 147?C160 inhibit the development of pathology at the regression stage. Simultaneous administration of these peptides in liposomes significantly reduces the level of antibodies against MBP. The synergistic therapeutic effect of MBP fragments reduces the integral disease score by inhibiting the first EAE attack and mitigating the subsequent relapse. Thus, our findings offer new opportunities for the efficient treatment of multiple sclerosis.  相似文献   

4.
We have characterized the changes in tissue concentrations of amino acids and biogenic amines in the central nervous system (CNS) of mice with MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model commonly used to study multiple sclerosis (MS). High performance liquid chromatography was used to analyse tissue samples from five regions of the CNS at the onset, peak and chronic phase of MOG35-55 EAE. Our analysis includes the evaluation of several newly examined amino acids including d-serine, and the inter-relations between the intraspinal concentration changes of different amino acids and biogenic amines during EAE. Our results confirm many of the findings from similar studies using different variants of the EAE model as well as those examining changes in amino acid and biogenic amine levels in the cerebrospinal fluid (CSF) of MS patients. However, several notable differences were observed between mice with MOG35-55-induced EAE with findings from human studies and other EAE models. In addition, our analysis has identified strong correlations between different amino acids and biogenic amines that appear to change in two distinct groups during EAE. Group I analyte concentrations are increased at EAE onset and peak but then decrease in the chronic phase with a large degree of variability. Group II is composed of amino acids and biogenic amines that change in a progressive manner during EAE. The altered levels of these amino acids and biogenic amines in the disease may represent a critical pathway leading to neurodegenerative processes that are now recognized to occur in EAE and MS.  相似文献   

5.
Multiple sclerosis (MS) is an inflammatory and demyelinating condition of the CNS, characterized by perivascular infiltrates composed largely of T lymphocytes and macrophages. Although the precise cause remains unknown, numerous avenues of research support the hypothesis that autoimmune mechanisms play a major role in the development of the disease. Pathologically similar lesions to those seen in MS can be induced in laboratory rodents by immunization with CNS-derived antigens. This form of disease induction, broadly termed experimental autoimmune encephalomyelitis, is frequently the starting point in MS research with respect to studying pathogenesis and creating novel treatments. Many different EAE models are available, each mimicking a particular facet of MS. These models all have common ancestry, and have developed from a single concept of immunization with self-antigen. We will discuss the major changes in immunology research, which have shaped the EAE models we use today, and discuss how current animal models of MS have resulted in successful treatments and more open questions for researchers to address.  相似文献   

6.
Lassmann H  van Horssen J 《FEBS letters》2011,585(23):3715-3723
Studies aimed to elucidate the pathogenesis of the disease and to find new therapeutic options for multiple sclerosis (MS) patients heavily rely on experimental autoimmune encephalomyelitis (EAE) as a suitable experimental model. This strategy has been highly successful for the inflammatory component of the disease, but had so far little success in the development of neuroprotective therapies, which are also effective in the progressive stage of the disease. Here we discuss opportunities and limitations of EAE models for MS research and provide an overview on the complex mechanisms leading to demyelination and neurodegeneration in this disease. We suggest that the underlying mechanisms involve adaptive and innate immunity. However, mitochondrial injury, resulting in energy failure, is a key element of neurodegeneration in MS and is apparently driven by radical production in activated microglia.  相似文献   

7.
Upon stimulation by microbial products through TLR, dendritic cells (DC) acquire the capacity to prime naive T cells and to initiate a proinflammatory immune response. Recently, we have shown that APC within the CNS of multiple sclerosis (MS) patients contain peptidoglycan (PGN), a major cell wall component of Gram-positive bacteria, which signals through TLR and NOD. In this study, we report that Staphylococcus aureus PGN as a single component can support the induction of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model for MS. Mice immunized with an encephalitogenic myelin oligodendrocyte glycoprotein peptide in IFA did not develop EAE. In contrast, addition of PGN to the emulsion was sufficient for priming of autoreactive Th1 cells and development of EAE. In vitro studies demonstrate that PGN stimulates DC-mediated processes, reflected by increased Ag uptake, DC maturation, Th1 cell expansion, activation, and proinflammatory cytokine production. These data indicate that PGN-mediated interactions result in proinflammatory stimulation of Ag-specific effector functions, which are important in the development of EAE. These PGN-mediated processes may occur both within the peripheral lymph nodes as well as in the CNS and likely involve recognition by TLR on DC. Thus, PGN may provide a physiological trigger of DC maturation, and in this way disrupt the normal tolerance to self Ag. As such, PGN signaling pathways may serve as novel targets for the treatment of MS.  相似文献   

8.
Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia–axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia–axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte–axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process.  相似文献   

9.
多发性硬化(MS)是中青年非外伤性致残的最常见原因,但是MS的发病机制迄今尚不完全明了。核磁共振成像(MRI)是目前诊断、监测MS的重要手段。实验性自身免疫性脑脊髓炎(EAE)是公认的研究人类MS的动物模型,MRI为EAE模型的评估提供直接、客观的影像学依据。理想的EAE大鼠模型不仅有助于开展对MS的防治、发病机理、相关药物开发等多方面的研究,而且为MRI提供合适的研究平台,对MS早期诊断、病情的监测和评价提供重要线索。  相似文献   

10.
Multiple sclerosis (MS) is a complex multifactorial disease of the central nervous system (CNS) for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund''s adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE), an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env) can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS.  相似文献   

11.
Copolymer 1 (Cop 1, Copaxone) is a synthetic amino acid copolymer effective in suppression of experimental allergic encephalomyelitis (EAE). The suppressive effect of Cop 1 in EAE is not restricted to a certain species, disease type or encephalitogen used for EAE induction. In phase II and III clinical trials, Cop 1 was found to slow the progression of disability and reduce the relapse rate in exacerbating-remitting multiple sclerosis (MS) patients. In vivo and in vitro studies suggest that the mechanism for Cop 1 activity in EAE and MS involves, as an initial step, the binding of Cop 1 to MHC class II molecules. This binding results in competition with myelin antigens for T-cell activation, both at the MHC and T-cell receptor levels and in induction of specific suppressor cells of the Th2 type. As an antigen-specific intervention, Cop 1 has the advantage of reduced probability for long-term damage to the immune system, and is thus a safe and effective novel therapeutic approach to MS. It also serves to illustrate the new concept of a drug/vaccine specific for a single autoimmune disease. Indeed, we have used a similar approach for myasthenia gravis. Myasthenia gravis (MG) and its experimental animal model, experimental autoimmune MG (EAMG), are immune disorders characterized by circulating antibodies and lymphocyte autoreactivity to nicotinic acetylcholine receptor (AChR). We utilized peptides representing different sequences of the human acetylcholine receptor alpha-subunit to study the role of T cells in the initiation, development and immunomodulation of myasthenia gravis. Here we summarize our studies over the last decade on T cells specific to 'myasthenogenic' epitopes of the alpha-subunit of the human acetylcholine receptor and their relevance for myasthenia gravis.  相似文献   

12.
Multiple sclerosis is a chronic neuroinflammatory demyelinating disorder of the central nervous system with a strong neurodegenerative component. While the exact etiology of the disease is yet unclear, autoreactive T lymphocytes are thought to play a central role in its pathophysiology. MS therapy is only partially effective so far and research efforts continue to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for MS sharing many clinical and pathophysiological features. There is a broad diversity of EAE models which reflect different clinical, immunological and histological aspects of human MS. Actively-induced EAE in mice is the easiest inducible model with robust and replicable results. It is especially suited for investigating the effects of drugs or of particular genes by using transgenic mice challenged by autoimmune neuroinflammation. Therefore, mice are immunized with CNS homogenates or peptides of myelin proteins. Due to the low immunogenic potential of these peptides, strong adjuvants are used. EAE susceptibility and phenotype depends on the chosen antigen and rodent strain. C57BL/6 mice are the commonly used strain for transgenic mouse construction and respond among others to myelin oligodendrocyte glycoprotein (MOG). The immunogenic epitope MOG35-55 is suspended in complete Freund''s adjuvant (CFA) prior to immunization and pertussis toxin is applied on the day of immunization and two days later. Mice develop a "classic" self-limited monophasic EAE with ascending flaccid paralysis within 9-14 days after immunization. Mice are evaluated daily using a clinical scoring system for 25-50 days. Special considerations for care taking of animals with EAE as well as potential applications and limitations of this model are discussed.  相似文献   

13.
The high failure rate of immunotherapies in multiple sclerosis (MS) clinical trials demonstrates problems in translating new treatment concepts from animal models to the patient. One main reason for this 'immunotherapy gap' is the usage of immunologically immature, microbiologically clean and genetically homogeneous rodent strains. Another reason is the artificial nature of the experimental autoimmune encephalomyelitis model, which favors CD4+ T cell driven autoimmune mechanisms, whereas CD8+ T cells are prevalent in MS lesions. In this paper, we discuss preclinical models in humanized rodents and non-human primates that are genetically closer to MS. We also discuss models that best reproduce specific aspects of MS pathology and how these can potentially improve preclinical selection of promising therapies from the discovery pipeline.  相似文献   

14.
BackgroundMultiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS.MethodsTwenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord.ResultsB6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.ConclusionsOur results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS.  相似文献   

15.
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.  相似文献   

16.

Background

Multiple microarray analyses of multiple sclerosis (MS) and its experimental models have been published in the last years.

Objective

Meta-analyses integrate the information from multiple studies and are suggested to be a powerful approach in detecting highly relevant and commonly affected pathways.

Data sources

ArrayExpress, Gene Expression Omnibus and PubMed databases were screened for microarray gene expression profiling studies of MS and its experimental animal models.

Study eligibility criteria

Studies comparing central nervous system (CNS) samples of diseased versus healthy individuals with n >1 per group and publically available raw data were selected.

Material and Methods

Included conditions for re-analysis of differentially expressed genes (DEGs) were MS, myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in rats, proteolipid protein-induced EAE in mice, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and a transgenic tumor necrosis factor-overexpressing mouse model (TNFtg). Since solely a single MS raw data set fulfilled the inclusion criteria, a merged list containing the DEGs from two MS-studies was additionally included. Cross-study analysis was performed employing list comparisons of DEGs and alternatively Gene Set Enrichment Analysis (GSEA).

Results

The intersection of DEGs in MS, EAE, TMEV-IDD, and TNFtg contained 12 genes related to macrophage functions. The intersection of EAE, TMEV-IDD and TNFtg comprised 40 DEGs, functionally related to positive regulation of immune response. Over and above, GSEA identified substantially more differentially regulated pathways including coagulation and JAK/STAT-signaling.

Conclusion

A meta-analysis based on a simple comparison of DEGs is over-conservative. In contrast, the more experimental GSEA approach identified both, a priori anticipated as well as promising new candidate pathways.  相似文献   

17.
Many modulators of inflammation, including chemokines, neuropeptides, and neurotransmitters signal via G protein-coupled receptors (GPCR). GPCR kinases (GRK) can phosphorylate agonist-activated GPCR thereby promoting receptor desensitization. Here we describe that in leukocytes from patients with active relapsing-remitting multiple sclerosis (MS) or with secondary progressive MS, GRK2 levels are significantly reduced. Unexpectedly, cells from patients during remission express even lower levels of GRK2. The level of GRK2 in leukocytes of patients after stroke, a neurological disorder with paralysis but without an autoimmune component, was similar to GRK2 levels in cells from healthy individuals. In addition, we demonstrate that the course of recombinant myelin oligodendrocyte glycoprotein (1-125)-induced experimental autoimmune encephalomyelitis (EAE), an animal model for MS, is markedly different in GRK2(+/-) mice that express 50% of the GRK2 protein in comparison with wild-type mice. Onset of EAE was significantly advanced by 5 days in GRK2(+/-) mice. The earlier onset of EAE was associated with increased early infiltration of the CNS by T cells and macrophages. Although disease scores in the first phase of EAE were similar in both groups, GRK2(+/-) animals did not develop relapses, whereas wild-type animals did. The absence of relapses in GRK2(+/-) mice was associated with a marked reduction in inflammatory infiltrates in the CNS. Recombinant myelin oligodendrocyte glycoprotein-induced T cell proliferation and cytokine production were normal in GRK2(+/-) animals. We conclude that down-regulation of GRK2 expression may have important consequences for the onset and progression of MS.  相似文献   

18.
The present work deals with the synthesis of a new series of thalidomide derivatives for therapeutic applications. These compounds were evaluated in vitro on a human endothelial cell line EA.hy926 for their antiproliferative potential and in vivo on an experimental animal multiple sclerosis model called EAE as angiogenesis inhibitors. The preliminary results obtained on EAE assays seem to validate that anti-angiogenesis compounds could be promising tools for the treatment of MS.  相似文献   

19.
Ceramides are mediators of apoptosis and inflammatory processes. In an animal model of multiple sclerosis (MS), the experimental autoimmune encephalomyelitis (EAE) model, we observed a significant elevation of C(16:0)-Cer in the lumbar spinal cord of EAE mice. This was caused by a transiently increased expression of ceramide synthase (CerS) 6 in monocytes/macrophages and astroglia. Notably, this corresponds to the clinical finding that C(16:0)-Cer levels were increased 1.9-fold in cerebrospinal fluid of MS patients. NO and TNF-α secreted by IFN-γ-activated macrophages play an essential role in the development of MS. In murine peritoneal and mouse-derived RAW 264.7 macrophages, IFN-γ-mediated expression of inducible NO synthase (iNOS)/TNF-α and NO/TNF-α release depends on upregulation of CerS6/C(16:0)-Cer. Downregulation of CerS6 by RNA interference or endogenous upregulation of C(16:0)-Cer mediated by palmitic acid in RAW 264.7 macrophages led to a significant reduction or increase in NO/TNF-α release, respectively. EAE/IFN-γ knockout mice showed a significant delay in disease onset accompanied by a significantly less pronounced increase in CerS6/C(16:0)-Cer, iNOS, and TNF-α compared with EAE/wild-type mice. Treatment of EAE mice with l-cycloserine prevented the increase in C(16:0)-Cer and iNOS/TNF-α expression and caused a remission of the disease. In conclusion, CerS6 plays a critical role in the onset of MS, most likely by regulating NO and TNF-α synthesis. CerS6 may represent a new target for the inhibition of inflammatory processes promoting MS development.  相似文献   

20.
Experimental allergic encephalomyelitis (EAE), an experimental autoimmune disease of the central nervous system (CNS), is readily induced in many mammalian species by immunization with CNS tissue or myelin basic protein (MBP) purified from the CNS. EAE has been frequently used as a model for multiple sclerosis (MS). However, EAE generally presents as an acute monophasic disease in the adult animal after immunization with MBP. After recovery, the animal is resistant to rechallenge with encephalitogen (1). Two exceptions to these observations have been reported. McFarlin et al. (2) reported that a variable number of Lewis rats showed signs of a single, mild relapse about a week after recovery from MBP-induced acute EAE. Panitch and Ciccone (3) have reported induction of recurrent EAE in rats immunized with human MBP. Chronic, relapsing EAE has been induced in the mouse; however, an apparent requirement for CNS tissue had been noted (4, 5). Recently, during the course of a series of experiments on the induction of EAE in SJL/J, PL/J, and (SJL/J X PL/J)F1 (SPL F1) mice, it was observed that the F1 mice frequently had paralytic relapses after recovery from MBP-induced symptoms. Experiments were initiated to examine this phenomenon, and the findings are presented below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号