首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Recent evidence indicates that muscle ischemia and activation of the muscle chemoreflex are the principal stimuli to sympathetic nerve activity (SNA) during isometric exercise. We postulated that physical training would decrease muscle chemoreflex stimulation during isometric exercise and thereby attenuate the SNA response to exercise. We investigated the effects of 6 wk of unilateral handgrip endurance training on the responses to isometric handgrip (IHG: 33% of maximal voluntary contraction maintained for 2 min). In eight normal subjects the right arm underwent exercise training and the left arm sham training. We measured muscle SNA (peroneal nerve), heart rate, and blood pressure during IHG before vs. after endurance training (right arm) and sham training (left arm). Maximum work to fatigue (an index of training efficacy) was increased by 1,146% in the endurance-trained arm and by only 40% in the sham-trained arm. During isometric exercise of the right arm, SNA increased by 111 +/- 27% (SE) before training and by only 38 +/- 9% after training (P less than 0.05). Endurance training did not significantly affect the heart rate and blood pressure responses to IHG. We also measured the SNA response to 2 min of forearm ischemia after IHG in five subjects. Endurance training also attenuated the SNA response to postexercise forearm ischemia (P = 0.057). Sham training did not significantly affect the SNA responses to IHG or forearm ischemia. We conclude that endurance training decreases muscle chemoreflex stimulation during isometric exercise and thereby attenuates the sympathetic nerve response to IHG.  相似文献   

3.
Ischemic exercise and the muscle metaboreflex.   总被引:1,自引:0,他引:1  
In exercising muscle, interstitial metabolites accumulate and stimulate muscle afferents. This evokes the muscle metaboreflex and raises arterial blood pressure (BP). In this report, we examined the effects of tension generation on muscle metabolites and BP during ischemic forearm exercise in humans. Heart rate (HR), BP, P(i), H(2)PO(4)(-), and pH ((31)P-NMR spectroscopy) data were collected in 10 normal healthy men (age 23 +/- 1 yr) during rhythmic handgrip exercise. After baseline measurements, the subjects performed rhythmic handgrip for 2 min. At 2 min, a 250-mmHg occlusion cuff was inflated, and ischemic handgrip exercise was continued until near fatigue (Borg 19). Measurements were continued for an additional 30 s of ischemia. This protocol was performed at 15, 30, 45, and 60% of the subjects' maximum voluntary contraction (MVC) in random order. As tension increased, the time to fatigue decreased. In addition, mean arterial pressure and HR were higher at 60% MVC than at any of the other lower tensions. The NMR data showed significantly greater increases in H(2)PO(4)(-), P(i), and H(+) at 60% than at 15 and 30% MVC. Therefore, despite the subjects working to the same perceived effort level, a greater reflex response (represented by BP and HR data) was elicited at 60% MVC than at any of the other ischemic tensions. These data are consistent with the hypothesis that, as tension increases, factors aside from insufficient blood flow contribute to the work effect on muscle metabolites and the magnitude of the reflex response.  相似文献   

4.
Eighteen male volunteers (aged 20-23 years), not involved in any sporting activities, were submitted to 13 weeks of training consisting of 30 min exercise [at 50%-75% maximal oxygen intake (VO2max)] on a cycle ergometer, performed 3 times a week. Every 4 weeks cardiac function was evaluated by measuring the systolic time intervals at rest and during submaximal cycle exercise. Stroke volume (SV), heart rate (HR) and blood pressure (BP) responses to submaximal exercise, VO2max and anaerobic threshold (AT) were also determined. Significant increases in VO2max, increases in AT and SV at the submaximal exercise intensities, as well as decreases in HR and BP were found after 4 weeks of training. Resting systolic time intervals were not affected by training, but during the submaximal cycle exercise the values of the pre-ejection period (PEP) and isovolumic contraction time (ICT) corresponding to HR of 100 beats.min-1 were significantly lowered after 13 weeks of training, whereas PEP, ICT and total electromechanical systole corresponding to HR of 130 beats.min-1 were significantly shortened by the 4th week. The ratios of PEP:LVET (left ventricular ejection time) and ICT:LVET during submaximal exercise were significantly lowered by training starting from the 8th week. These changes might be interpreted as evidence of the training-induced enhancement of the "contractility reserve", i.e. the ability to increase heart muscle contractility with increasing exercise intensity.  相似文献   

5.
The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.  相似文献   

6.
The mechanism of the pressor response to small muscle mass (e.g., forearm) exercise and during metaboreflex activation may include elevations in cardiac output (Q) or total peripheral resistance (TPR). Increases in Q must be supported by reductions in visceral venous volume to sustain venous return as heart rate (HR) increases. Therefore, this study tested the hypothesis that increases in Q, supported by reductions in splanchnic volume (portal vein constriction), explain the pressor response during handgrip exercise and metaboreflex activation. Seventeen healthy women performed 2 min of static ischemic handgrip exercise and 2 min of postexercise circulatory occlusion (PECO) while HR, stroke volume and superficial femoral artery flow (Doppler), blood pressure (Finometer), portal vein diameter (ultrasound imaging), and muscle sympathetic nerve activity (MSNA; microneurography) were measured followed by the calculation of Q, TPR, and leg vascular resistance (LVR). Compared with baseline, mean arterial blood pressure (MAP) (P < 0.001) and Q (P < 0.001) both increased in each minute of exercise accompanied by a approximately 5% reduction in portal vein diameter (P < 0.05). MAP remained elevated during PECO, whereas Q decreased below exercise levels. MSNA was elevated above baseline during the second minute of exercise and through the PECO period (P < 0.05). Neither TPR nor LVR was changed from baseline during exercise and PECO. The data indicate that the majority of the blood pressure response to isometric handgrip exercise in women was due to mobilization of central blood volume and elevated stroke volume and Q rather than elevations in TVR or LVR resistance.  相似文献   

7.
In this study we measured (n = 6) the phosphocreatine-to-inorganic phosphate ratio (PCr/Pi), Pi, and pH with 31P-nuclear magnetic resonance (31P-NMR) in the human forearm during static work at 30% of maximal voluntary contraction (MVC) for 2 min followed immediately by 3 min of circulatory arrest (forearm arterial occlusion). Static exercise, with its central volitional and skeletal muscle metabolic and mechanical afferent components, caused a rise in heart rate (HR, 32%), blood pressure (BP, 29%), and calf vascular resistance (calf R, 30%). During forearm occlusion after static exercise, HR returned to base line, the increase in BP was attenuated by 30%, and calf R remained elevated and unchanged. The percent change in calf R was correlated with forearm cellular pH (R = 0.56, P less than 0.001) but only weakly associated with PCr/Pi (R = 0.33, P less than 0.042). 30% MVC for 1 min followed by arterial occlusion (3 min) reduced PCr/Pi by 65% and pH by 0.16 U (P less than 0.05). Calf R was unchanged. Circulatory arrest alone (20 min) caused no change in either pH or calf R but large changes in PCr/Pi (50% reduction). We conclude that 1) there is an association between forearm cellular acidosis and calf vasconstriction during static forearm exercise and 2) large changes in PCr/Pi without concomitant changes in pH are not associated with changes in calf R.  相似文献   

8.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

9.
Studies of whole limb blood flow have shown that static handgrip elicits a vasodilatation in the resting forearm and vasoconstriction in the resting leg. We asked if these responses occur in the skeletal muscle vascular bed, and if so, what is the relative contribution of local metabolic versus other mechanisms to these vascular responses. Blood flow recordings were made simultaneously in the skeletal muscle of the resting arm and leg using the Xenon-washout method in ten subjects during 3 min of isometric handgrip at 30% of maximal voluntary contraction. In the arm, skeletal muscle vascular resistance (SMVR) decreased transiently at the onset of exercise followed by a return to baseline levels at the end of exercise. In the leg SMVR remained unchanged during the 1st min of handgrip, but had increased to exceed baseline levels by the end of exercise. During exercise electromyography (EMG) recordings from nonexercising limbs demonstrated a progressive 20-fold increase in activity in the arm, but remained at baseline in the leg. During EMG-signal modelled exercise performed to mimic the inadvertent muscle activity, decreases in forearm SMVR amounted to 57% of the decrease seen with controlateral handgrip. The present study would seem to indicate that vascular tone in nonexercising skeletal muscle in the arm and leg are controlled differently during the early stages of static handgrip. Metabolic vasodilatation due to involuntary contraction could significantly modulate forearm skeletal muscle vascular responses, but other factors, most likely neural vasodilator mechanisms, must make major contributions. During the later stages of contralateral sustained handgrip, vascular adjustments in resting forearm skeletal muscle would seem to be the final result of reflex sympathetic vasoconstrictor drive, local metabolic vasodilator forces and possibly neurogenic vasodilator mechanisms.  相似文献   

10.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

11.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The cardiovascular response to static exercise has often been quantified on the basis of a comparison between static handgrip and dynamic cycling exercise. It is then difficult to make precise comparisons because the physical units of work are not compatible. If the data from dynamic exercise can be used to predict the cardiovascular response to zero movement (static exercise) this would suggest that static exercise is not fundamentally different from dynamic exercise. Using leg extension exercise which lasted for 1 min, a set of weights was lifted repeatedly 50 times/min, through three different distances. On each occasion, the heart rate, systolic time intervals (STI) and systemic arterial blood pressure were monitored non-invasively. Regression analysis of heart rate (HR) or blood pressure (BP) against the distance moved by the weights was used to predict the heart rate or blood pressure that would be expected for static exercise. In addition the same responses were measured following 1 min of static exercise during which the weights were held up but not moved. Five subjects, trained in leg extension exercise, completed the four exercise sessions in a random order. A constant force was produced in each variant of the protocol and in the static exercise it amounted to 50% maximal voluntary contraction (MVC). The forces developed and the distance the weights were lifted were monitored. During this sustained static exercise at relatively low intensity the cardiovascular changes could be predicted from the responses induced by dynamic exercise. It is suggested that other factors are important in determining the cardiovascular response to exercise, not simply the mode.  相似文献   

13.
The purpose of this study was to investigate the influence of the size of the active muscle mass on the cardiovascular response to static contraction. Twelve male subjects performed one-arm handgrip (HG), two-leg extension (LE), and a "dead-lift" maneuver (DL) in a randomly assigned order for 3 min at 30% of maximal voluntary contraction. O2 uptake (VO2), heart rate (HR), and mean intra-arterial blood pressure (MABP) were measured at rest and, in addition to absolute tension exerted, throughout contraction. There was a direct relationship between the size of the active muscle mass and the magnitude of the increases in VO2, HR, and MABP, even though all contractions were performed at the same relative intensity. Tension, VO2, HR, and MABP increased progressively from HG to LE to DL. It was concluded that at the same percentage of maximal voluntary contraction, the magnitude of the cardiovascular response to isometric exercise is directly influenced by the size of the contracting muscle mass.  相似文献   

14.
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.  相似文献   

15.
Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents.  相似文献   

16.
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 +/- 74 to 673 +/- 90 U/min, P < 0.01) and mean blood pressure (102 +/- 2 to 106 +/- 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.  相似文献   

17.
The aim of this study was to examine the isometric endurance response and the heart rate and blood pressure responses to isometric exercise in two muscle groups in ten young (age 23–29 years) and seven older (age 54–59 years) physically active men with similar estimated forearm and thigh muscle masses. Isometric contractions were held until fatigue using the finger flexor muscles (handgrip) and with the quadriceps muscle (one-legged knee extension) at 20%, 40%, and 60% of the maximal voluntary contraction (MVC). Heart rate and arterial pressure were related to the the individual's contraction times. The isometric endurance response was longer with handgrip than with one-legged knee extension, but no significant difference was observed between the age groups. The isometric endurance response averaged 542 (SEM 57), 153 (SEM 14), and 59 (SEM 5) s for the handgrip, and 276 (SEM 35), 94 (SEM 10) and 48 (SEM 5) s for the knee extension at the three MVC levels, respectively. Heart rate and blood pressure became higher during one-legged knee extension than during handgrip, and with increasing level of contraction. The older subjects had a lower heart rate and a higher blood pressure response than their younger counterparts, and the differences were more apparent at a higher force level. The results would indicate that increasing age is associated with an altered heart rate and blood pressure response to isometric exercise although it does not affect isometric endurance. Accepted: 23 October 1997  相似文献   

18.
In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.  相似文献   

19.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Our aim was to determine the muscle metaboreflex threshold and gain in humans by creating an open-loop relationship between active muscle blood flow and hemodynamic responses during a rhythmic handgrip exercise. Eleven healthy subjects performed the exercise at 5 or 15% of maximal voluntary contraction (MVC) in random order. During the exercise, forearm blood flow (FBF), which was continuously measured using Doppler ultrasound, was reduced in five steps by manipulating the inner pressure of an occlusion cuff on the upper arm. The FBF at each level was maintained for 3 min. The initial reductions in FBF elicited no hemodynamic changes, but once FBF fell below a threshold, mean arterial blood pressure (MAP) and heart rate (HR) increased and total vascular conductance (TVC) decreased in a linear manner. The threshold FBF during the 15% MVC trial was significantly higher than during the 5% MVC trial. The gain was then estimated as the slope of the relationship between the hemodynamic responses and FBFs below the threshold. The gains for the MAP and TVC responses did not differ between workloads, but the gain for the HR response was greater in the 15% MVC trial. Our findings thus indicate that increasing the workload shifts the threshold for the muscle metaboreflex to higher blood flows without changing the gain of the reflex for the MAP and TVC responses, whereas it enhances the gain for the HR response.  相似文献   

20.
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号