首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in‐stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse‐ and fine‐mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse‐mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter‐input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher‐quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower‐quality litter inputs. Birch litter decomposition rate in coarse‐mesh bags was best predicted by the same environmental variables as in fine‐mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.  相似文献   

2.
Questions: Boreal forests along small streams are bryophyte diversity hotspots because they are moist, productive and relatively high pH. Do these factors also explain the large differences in species richness and species composition found among streamside sites? Do the species of species‐poor sites represent nested subsets of the species of more species‐rich sites? How do the results apply to conservation? Location: Forests along small streams in mid‐boreal Sweden. Methods: Survey of the flora of liverworts and mosses and habitat properties, including calculation of a pH‐index based on species indicator values, in 37 sites (1000‐m2 plots). Results: The number of bryophyte species per plot ranged from 34 to 125. Neither soil moisture nor basal area of trees (a proxy for productivity) correlated significantly with species richness and composition, whereas pH‐index and cover of boulders did. Species richness and composition were more strongly correlated with pH‐index for mosses than for liverworts. The richness and composition of bryophyte species most frequently found on moist ground, stream channel margins and, most unexpected, woody debris were all more strongly associated with the pH‐index than with other habitat properties. Although species composition was significantly nested, there was still some turnover of species along the first ordination axis. Conclusions To attain high numbers of species, streamside forests need to have boulders and at least pockets with higher soil and stream‐water pH. The number of Red list species was weakly correlated with total species richness and the most species‐rich sites contained many species found more in non‐forest habitats. Hence, bryophyte conservation in streamside forests should not focus on species‐rich sites but on the quality and quantity of substrate available for assemblages of forest species that are strongly disfavoured by forestry.  相似文献   

3.
Nested bird and micro-habitat assemblages in a peatland archipelago   总被引:2,自引:0,他引:2  
Biotic assemblages of insular habitats are nested when poor assemblages are subsets of richer ones. Nestedness of species assemblages is frequent and may result from selective extinction or frequent colonization in insular habitats. It may also be created by a nested distribution of habitats among islands or by sampling bias. We sampled 67 isolated peatlands (7–843 ha) in southern Quebec, Canada, to measure nestedness of bird species assemblages among peatlands and assess the habitat nestedness hypothesis. Species and microhabitat assemblages were both strongly nested among peatlands. Whether sites were ranked by species richness, microhabitat richness or peatland area had no effect on nestedness. However, microhabitat nestedness was significantly reduced when sites were sorted by area rather than by microhabitat richness. As expected, if bird-microhabitat associations are responsible for the nested pattern of distribution, we found a positive correlation between the contributions of bird species and microhabitats to individual site nestedness. Nevertheless, microhabitat assemblages were significantly less nested than bird species assemblages, possibly because of frequent recolonization by birds or uneven sampling among sites. Received: 12 June 1998 / Accepted: 20 September 1998  相似文献   

4.
Aims The nested subset pattern has been widely studied in the last 20 years, and recent syntheses have challenged the prevalence of this pattern in nature. We examined the degree of nestedness, its temporal variability and its environmental correlates in stream insects of a boreal drainage system. We also examined differences between nested and idiosyncratic species in site occupancy, niche position and niche breadth. Location Koutajoki drainage basin in northern Finland. Methods We used (i) nestedness analyses with three null models for testing the significance of nestedness; (ii) Spearman rank correlation to examine the correlates of nestedness; (iii) outlying mean index analysis to analyse the niche characteristics of species; (iv) and t‐test to examine differences in niche breadth, niche position and site occupancy of idiosyncratic and other nested species. Results Stream insect assemblages were significantly nested in each of the three study years. The maximally packed matrices were significantly nested according to the nestedness calculator based on null models I (species frequencies and site richness equiprobable) and II (species frequencies fixed and site richness equiprobable), but non‐significant based on a conservative null model III (species frequencies and site richness fixed to those of the observed matrix). The most important correlate of nestedness was stream size, whereas isolation, productivity (total phosphorus) and habitat heterogeneity exhibited non‐significant relationship with nestedness. Idiosyncratic species occurred, on average, at more sites than nested species, mirroring the restricted distributions of several nested species that were inclined towards species‐rich sites. Idiosyncratic and nested species also differed in niche position and niche breadth, with idiosyncratic species having, on average, less marginal niche positions and wider niches than nested species. Main conclusions Stream size correlated with nestedness, possibly because small streams were inhabited only by species able to persist under, or colonize shortly after, disturbances, while most species could occur at larger sites where disturbances are less severe. From the conservation perspective, our findings suggest that stream size really matters, given that sites with high species richness and many rare species are more likely to occur in larger streams. However, also the requirements of idiosyncratic species should be accommodated in conservation planning.  相似文献   

5.
Aim Nestedness occurs when species present in depauperate sites are subsets of those found in species‐rich sites. The degree of congruence of site nestedness among different assemblages can inform commonalities of mechanisms structuring the assemblages. Well‐nested assemblages may still contain idiosyncratic species and sites that notably depart from the typical assemblage pattern. Idiosyncrasy can arise from multiple processes, including interspecific interactions and habitat preferences, which entail different consequences for species co‐occurrences. We investigate the influence of fine‐scale habitat variation on nestedness and idiosyncrasy patterns of beetle and bird assemblages. We examine community‐level and pairwise species co‐occurrence patterns, and highlight the potential influence of interspecific interactions for assemblage structure. Location Côte‐Nord region of Québec, Canada. Methods We sampled occurrences of ground‐dwelling beetles, flying beetles and birds at sites within old‐growth boreal forest. We examined the nestedness and idiosyncrasy of sites and sought relationships to habitat attributes. We analysed non‐random species co‐occurrence patterns at pairwise and community levels, using null model analysis and five ‘association’ indices. Results All three assemblages were significantly nested. There was limited congruence only between birds and flying beetles whose nestedness was related to canopy openness. For ground‐dwelling beetles, nestedness was related to high stand heterogeneity and sapling density, whereas site idiosyncrasy was inversely related to structural heterogeneity. For birds, site idiosyncrasy increased with canopy cover, and most idiosyncratic species were closed‐canopy specialists. In all assemblages, species idiosyncrasy was positively correlated with the frequency of negative pairwise associations. Species co‐occurrence patterns were non‐random, and for flying beetles and birds positive species pairwise associations dominated. Community‐level co‐occurrence summaries may not, however, always reflect these patterns. Main conclusions Nestedness patterns of different assemblages may not correlate, even when sampled at common locations, because of different responses to local habitat attributes. We found idiosyncrasy patterns indicating opposing habitat preferences, consistent with antagonistic interactions among species within assemblages. Analysis of such patterns can thus suggest the mechanisms generating assemblage structures, with implications for biodiversity conservation.  相似文献   

6.
Aim Species communities often exhibit nestedness, the species found in species‐poor sites representing subsets of richer ones. In the Netherlands, where intensification of land use has led to severe fragmentation of nature, we examined the degree of nestedness in the distribution of Orthoptera species. An assessment was made of how environmental conditions and species life‐history traits are related to this pattern, and how variation in sampling intensity across sites may influence the observed degree of nestedness. Location The analysis includes a total of 178 semi‐natural sites in the Pleistocene sand region of the Netherlands. Methods A matrix recording the presence or absence of all Orthoptera species in each site was compiled using atlas data. Additionally, separate matrices were constructed for the species of suborders Ensifera and Caelifera. The degree of nestedness was measured using the binmatnest calculator. binmatnest uses an algorithm to sort the matrices to maximal nestedness. We used Spearman’s rank correlations to evaluate whether sites were sorted by area, isolation or habitat heterogeneity, and whether species were sorted by their dispersal ability, rate of development or degree of habitat specificity. Results We found the Orthoptera assemblages to be significantly nested. The rank correlation between site order and sampling intensity was high. The degree of nestedness was lower, but remained significant when under‐ and over‐sampled sites were excluded from the analysis. Site order was strongly correlated with both size of sample site and number of habitat types per site. Rank correlations showed that species were probably ordered by variation in habitat specificity, rather than by variation in dispersal capacity or rate of development of the species. Main conclusions Variation in sampling intensity among sites had a strong impact on the observed degree of nestedness. Nestedness in habitats may underlie the observed nestedness within the Orthoptera assemblages. Habitat heterogeneity is closely related to site area, which suggests that several large sites should be preserved, rather than many small sites. Furthermore, the results corroborate a focus of nature conservation policy on sites where rare species occur, as long as the full spectrum of habitat conditions and underlying ecological processes is secured.  相似文献   

7.
This study aimed to evaluate if anuran species distributions in riparian and non‐riparian areas are influenced by environmental factors (i.e. niche) and/or by spatial factors (i.e. dispersal). The environmental variables analysed were altitude, distance from the stream and leaf litter depth. Spatial factors were represented by the eigenvectors extracted from geographical coordinates by eigenfunction analysis. The study was conducted in 24 km2 of terra‐firme forest in Central Amazonia, Manaus – Amazonas, Brazil. Between November 2008 and May 2009, three samples were taken from 41 plots, 21 plots being placed at non‐riparian areas and another 20 placed in riparian areas. We submitted the assemblage dataset to a partial redundancy analysis to evaluate the contributions of environmental and spatial variables (selected with a forward selection procedure). In addition, we tested if communities differ from riparian and non‐riparian areas using a db‐MANOVA. Species richness and species composition differed between riparian and non‐riparian plots. Some species were restricted to riparian areas. Altitude was the only significant variable (P = 0.005) explaining 21% of the total variance. When analysing the data from all plots using the partial redundancy analysis, 27% of the variance was explained by spatial and environmental variables. The environmental variables explained exclusively 4% of the variance in assemblage composition, and 13% was explained by environmental variables that were also structured in space (i.e. the shared fraction), while 10% was explained exclusively by spatial variables. In conclusion, our results showed differences between the assemblages of riparian and non‐riparian areas which can be explained by the distribution of anuran species along environmental gradients altitude and distance to streams, with little evidence of dispersal limitation.  相似文献   

8.
Aim To investigate the relative role of local versus landscape factors for local species diversity of snails and slugs in conservation forests. In landscapes with small, isolated patches of semi‐natural habitats, many species that require large habitat areas have disappeared or are threatened. We asked whether small sedentary taxa that depend on local conditions, such as molluscs, are affected if total habitat area decreases in the landscape. Location Temperate broadleaved and oak‐rich forest in southern Sweden. Methods We sampled molluscs in 25 small conservation forests that are well‐spaced out over a large region. In each forest, sampling was conducted in two plots, each of 1 ha, separated by about 25–100 m. Factors potentially influencing local diversity of molluscs were measured in the plots and in the surrounding landscape at different scales (in space and time) and were analysed by stepwise multiple regression and ordination (PCA and NMS). Results We recorded 53 species, and mean species richness per forest (plots pooled) was 22.6. The pH of the plant litter predicted both species richness and composition; other local (plot) factors of lower importance were canopy openness, stony ground and tree species. The area of conservation forest (woodland key habitat) within 10 km of plots was positively associated with species richness, and was also related to species composition. Openness of the landscape (agriculture) was a negative factor, but historical plot openness (1938–59) seemed to be unimportant. In addition, climate/topography (temperature and altitude) also predicted species composition of the sites. Main conclusions We rejected the hypothesis that microhabitat factors alone, or mainly, determine local species richness and composition of land molluscs. These representatives of small, sedentary organisms seem to be substantially influenced by the surrounding landscape, which should be considered in conservation work and in plans for the protection of forest biodiversity.  相似文献   

9.
Aim To test two hypotheses: (i) the Rapoport effect is valid for a river continuum, particularly regarding the altitudinal distribution of mayflies over the large‐scale continuum from alpine stream to medium‐sized lowland river, and (ii) the observed Rapoport effect is based on high nestedness of the meta‐assemblage, implying the presence of a common species pool and species‐thinned nested subsets. Location Geometric centre of Eurasia, south‐western Siberia, Russia. Methods Regression analysis of breadth and midpoints of species altitudinal ranges, species richness and altitude. Comparison of the observed patterns with the null model predicted by the mid‐domain effect and conventional null hypothesis. Nestedness analysis. Results The Rapoport effect was explicitly demonstrated: species altitudinal ranges expanded with increase in the ranges’ midpoints and average per‐altitude ranges increased with increase in altitude and concurrent decrease in species richness. The significance of each trend was confirmed with respect to both the null models applied. Nestedness analysis has revealed that the observed Rapoport effect is based on nested organization of the meta‐assemblage over the river altitudinal/longitudinal gradient: a common species pool at low (but not the lowest) altitudes and nested subsets of this pool at higher altitudes. Main conclusions This study for the first time credibly shows the altitudinal Rapoport effect in freshwaters. This finding demonstrates cross‐habitat‐type consistency of the Rapoport effect, but does not suggest that the Rapoport effect is an obligatory attribute of river systems or lotic organisms. High nestedness underlying the observed Rapoport effect together with some previous studies indicate that the Rapoport effect in altitudinal and bathymetric gradients in general may be based on nested organization. The study highlights a deficiency of cross‐habitat‐type analyses of macroecological patterns (i.e. over terrestrial, freshwater and marine habitats).  相似文献   

10.
Taxonomic nestedness, the degree to which the taxonomic composition of species‐poor assemblages represents a subset of richer sites, commonly occurs in habitat fragments and islands differing in size and isolation from a source pool. However, species are not ecologically equivalent and the extent to which nestedness is observed in terms of functional trait composition of assemblages still remains poorly known. Here, using an extensive database on the functional traits and the distributions of 6316 tropical reef fish species across 169 sites, we assessed the levels of taxonomical vs functional nestedness of reef fish assemblages at the global scale. Functional nestedness was considerably more common than taxonomic nestedness, and generally associated with geographical isolation, where nested subsets are gradually more isolated from surrounding reef areas and from the center of biodiversity. Because a nested pattern in functional composition implies that certain combinations of traits may be represented by few species, we identified these groups of low redundancy that include large herbivore‐detritivores and omnivores, small piscivores, and macro‐algal herbivores. The identified patterns of nestedness may be an outcome of the interaction between species dispersal capabilities, resource requirements, and gradients of isolation among habitats. The importance of isolation in generating the observed pattern of functional nestedness within biogeographic regions may indicate that disturbance in depauperate and isolated sites can have disproportionate effects on the functional structure of their reef fish assemblages.  相似文献   

11.
Using data from 46 sites in southern Finland and ordination methods, we examined plant-environment relationships in boreal mesic semi-natural grasslands at two spatial scales (grain sizes), using plots of 0.25 ha and 1 × 1 m. We applied the variation partitioning approach to determine the pure fractions of environmental variable groups and their joint effects on plant species compositional variation in the studied grasslands. The variables related to land-use intensity and high nutrient level (especially phosphorus) had a major role in explaining the species composition at both scales, although soil heterogeneity and habitat characteristics also accounted for a notable amount of the species compositional variation at the 0.25 ha grain size. At the 1 × 1 m grain size, the majority of the species compositional variation was related to the “pure” spatial differences between the studied grasslands (i.e. the site identity (dummy 0/1) variable), whereas the impacts of within-site variation of local environmental factors were considerably smaller. High nutrient levels and variables related to low land-use intensity, e.g. litter accumulation, were also significantly correlated with floristic variation at the 1 × 1 m grain size. Rare and declining grassland species are associated with low-nutrient grassland sites and patches. The main recommendation for the management planning of boreal semi-natural grasslands is that the first restoration attempts should be targeted to areas where nutrient levels, particularly that of phosphorus, are relatively low. Soil properties and plant species composition can provide useful guidelines for defining the correct management procedures for different sites.  相似文献   

12.
The widespread destruction and fragmentation of natural habitats around the world creates a strong incentive to understand how species and communities respond to such pressures. The vast majority of research into habitat fragmentation has focused solely on species presence or absence. However, analyses using innovative functional methodologies offer the prospect of providing new insights into the key questions surrounding community structure in fragmented systems. A key topic in fragmentation research is nestedness (i.e. the ordered composition of species assemblages involving a significant tendency for packing of the presence–absence matrix into a series of proper subsets). To date, nestedness analyses have been concerned solely with nestedness of species membership. Here, we capitalize on the publication of a recent nestedness index (traitNODF) in which the branch lengths of functional dendrograms are incorporated into the standard NODF nestedness index. Using bird community data from 18 forest‐habitat‐island studies, and measurements of eight continuous functional traits from over 1000 bird species, we conduct the first synthetic analysis of nestedness from a functional perspective (i.e. a nestedness analysis which incorporates how similar species are in terms of their ecological traits). We use two null models to test the significance of any observed functional nestedness, and investigate the role of habitat island area in driving functional nestedness. We also determine whether functional nestedness is driven primarily by species composition or by differences in species’ traits. We found that the majority (94%) of datasets were functionally nested by island area when a permutation null model was used, although only 11–22% of datasets were significantly functionally nested when a more conservative fixed‐fixed null model was used. Species composition was always the most important driver of functional nestedness, but the effect of differences in species traits was occasionally quite large. Our results isolate the importance of island area in driving functional nestedness where it does occur and show that habitat loss results in the ordered loss of functional traits. This analysis demonstrates the potential insights that may derive from testing for ordered patterns of functional diversity. Synthesis The widespread fragmentation of natural habitats around the world creates a strong incentive to understand how ecological communities respond to such pressures. A key topic in this research agenda is nestedness; however, to date, nestedness analyses have been concerned solely with species presence or absence. Using data from 18 bird‐habitat‐island studies we conduct the first synthetic analysis of nestedness from a functional perspective (i.e. a nestedness analysis which incorporates how similar species are in terms of their ecological traits). Our findings suggest that many bird‐habitat island communities are significantly functionally nested, although our results were sensitive to the null model used. Our study demonstrates the benefits of testing for ordered patterns of functional diversity.  相似文献   

13.
Riparian ecosystems play an important role in modulating a range of ecosystem processes that affect aquatic and terrestrial organisms. Butterflies are a major herbivore in terrestrial ecosystems and are also common in riparian ecosystems. Since butterflies use plants for larval food and adult nectar sources in riparian ecosystems, butterfly diversity can be utilized to evaluate riparian ecosystems. We compiled butterfly data from 33 sites in three riparian ecosystem types across the country and compared butterfly diversity in terms of number of species and quality index in relation to riparian environmental variables. Number of butterfly and plant species was not different among three riparian habitat types. Additionally, there was no significant ecological variable to distinguish the butterfly communities on three riparian habitats. Non-metric multi-dimensional scaling ordination showed that butterfly communities in three riparian ecosystem types differed from each other, and butterfly riparian quality index was the main variable for butterfly assemblages. Five indicator species for moor and another five species for riverine riparian ecosystems were identified. Three and one indicator species for moor and riparian ecosystems, respectively, were plant specialists, while 44 butterflies were general feeders, feeding on a wide range of hostplants in several habitats. These results suggest that butterfly species use actively riparian habitats for nectar and larval food, and the butterfly riparian quality index can be employed to track faunal change in riparian habitats, which are frequently threatened by disturbances such as water level and climate changes, and invasive species.  相似文献   

14.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool.  相似文献   

15.
野外调查发现上海地区早春非耕地杂草共106种,隶属于29科88属.计测了261个样地1305个样方中杂草的生态重要值和6种主要环境因子,应用典范对应分析作出了反映106种杂草与6种环境因子关系的二维排序图,应用双向指示种分析对106种杂草进行了有生态学意义的定量分类.根据6种环境因子与前两个排序轴相关系数的大小,发现土壤水分、土壤翻耕程度、人迹出没程度、交通影响程度是影响上海地区早春非耕地杂草分布的主要环境因素;根据双向指示种分析,结合典范对应分析的结果,可以从106种早春中分出五个生态类群,即类群Ⅰ:湿生淤泥海边滩涂杂草类群,类群Ⅱ:相对干燥海边滩涂杂草类群,类群Ⅲ:干扰相对较小的人工林地杂草类群;类群Ⅳ:干旱、开阔、干扰较重环境中的杂草类群;类群Ⅴ:湿润、开阔、干扰较重的弃耕农田环境中的杂草类群.  相似文献   

16.
Communities in isolated habitat patches surrounded by inhospitable matrices often form a nested subset pattern. However, the underlying causal mechanisms and conservation implications of nestedness in regional communities remain controversial. The nested ranks of species in a nested species‐by‐site matrix may reflect a gradient of species vulnerability to extinction or of colonization ability. However, nestedness analysis has rarely been used to explore determinants of species rank; consequently, little is known of underpinning mechanisms. In this study, we examined nestedness in moorland plant communities widely interspersed within the subalpine zone of northern Japan. Moorland sites differed in area (1000–160 000 m2) and were naturally isolated from one another to various extents within an inhospitable forest matrix. We also determined whether site characteristics (physical and morphometric measures) and species characteristics (niche position and breadth, based on species’ traits) are related to nestedness. Moorland plant communities in the study area were significantly nested. The pH and moorland kernel density (proxy for spatial clustering of moorlands around the focal site) were the most important predictors of moorland site nested rank in a nestedness matrix. Niche breadths of species (measured as variation in leaf mass area and height) predicted species’ nested ranks. Selective environmental tolerances imposed by environmental harshness and selective extinction caused by declines in site carrying capacities probably account for the nested subset pattern in moorland plant communities. The nested rank of species in the nestedness matrix can therefore be translated into the potential order of species loss explainable by species niche breadths (based on variation in functional traits). Complementary understanding of the determinants of site ranking and species ranking in the nestedness matrix provides powerful insight into ecological processes underlying nestedness and into the ways by which communities are assembled or disassembled by such processes.  相似文献   

17.
Dynamic alluvial landscapes offer many possibilities to study primary succession processes on newly developed habitats. However, within the Central European environmental conditions, where watercourses and their riparian spaces are under severe anthropogenic pressures — water regulation, deforestation, lowering of groundwater — natural processes are limited. We studied primary succession on alluvial stream deposits in an artificial lake, where we aimed to follow the terrestrialisation rate and habitat turnover, along with plant species richness and composition across successional stages. In 30 years, a pristine white-willow riparian forest developed. One half of the initially aquatic habitat became terrestrial. The frequency of change, studied on 11250 quadrats 10×10 m each (on a scale from “no change” to 8 changes) and the mean of change per habitat type (most of the habitats changed 2 to 3 times) revealed only one successional trajectory. The percentage flow chart showed a deterministic pathway of succession. The “time since formation” of a terrestrial habitat shows that more than 20% of the lake was terrestrialised within in the first ten years. We studied species richness and composition along three composed transects, following successional stages. We found that the newly assembled riparian white willow woodland has a surprisingly low colonisation rate of plant species.  相似文献   

18.
1. Blackfly species richness and community structure were analysed at fifty-six sites in northern Sweden in two seasons. The sites were situated in a wide range of streams and rivers from small springbrooks, bog streams and lake-outlet streams to medium-sized forest rivers and large rivers draining montane regions.
2. Thirty-nine blackfly species were found, with between two and thirteen species per site. Neither species richness nor abundance could be related to the environmental variables measured.
3. An analysis of labral fan size of blackflies indicated a clear trend for the prevalence of larvae with small fans in large rivers and larvae with larger fan size in small streams. Similarly, fan size related to current velocities so that large fans were associated with slow current velocities and small fans with high velocities.
4. A strong relationship existed between species composition and habitat, as seen in ordination by non-metric multidimensional scaling. The relationship found between fan size and habitat size-related variables, such as channel width, depth, velocity and substratum particle size, along with longitude and altitude, in partial least squares regression analysis offered an explanation of the species composition–habitat relationship.
5. In addition to testing that distributions of blackfly larvae reflect morphological traits, we tested two general hypotheses pertaining to distribution patterns: (a) that blackfly communities show bimodal distributions; and (b) that their distributions are nested. Neither of these two hypotheses was supported by our observations. However, widespread blackfly species were locally more abundant than those found at relatively few sites, thus showing a positive abundance–occupancy relationship.  相似文献   

19.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

20.
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human‐impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance, and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two Principal Component Analysis (PCA) ordination axes related to habitat structure (i.e., forest or nonforest) and human impact level (i.e., addition of man‐made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in nonforested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in nonforested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and nonforested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号