首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies (mAb) are high added value glycoproteins recommended for immunotherapy, diagnosis, and also for the treatment of bacterial infections resistant to multiple drugs such as Methicillin Resistant Staphylococcus aureus (MRSA). In addition to environmental conditions related to cell cultures, the intrinsic characteristics of hybridoma cells, like the secretion stability of monoclonal antibodies by the cells through successive subcultures, are relevant for the characterization of cell lines related to the productivity of mAb. The rate of mAb production differs significantly between different cell lines and different passage numbers, and it is an important variable in characterization of cell lines. In order to find a more robust, faster-growing, and higher-productivity cell line of hybridoma, cultivations in 24-well plates were performed in different subculture periods, or cell passages (P), of hybridoma cells producing MRSA anti-PBP2a monoclonal antibodies [MRSA-antiPBP2a (mAb)]. The objective of this study was to study the effects of cell growth and production of MRSA-antiPBP2a mAb secreted by murine hybridoma cells grown in different passages as well as determine the which passages the hybridomas can be cultivated without harming their growth and productivity. So, cell growth profiles of hybridomas secreting MRSA-antiPBP2a (mAb) and the production of MRSA-antiPBP2a mAb in different subculture periods or cell passages (P) were studied. Cell growth tests, monoclonal antibody productivity, and metabolite characteristics revealed substantial differences in those cells kept between P10 and P50. Similarities in the secretion of monoclonal antibody, growth, and metabolic profiles, were noted in the MRSA-antiPBP2a mAb producing hybridoma cells kept between P10 and P20. Also, glucose consumption (g/L) and lactate production (g/L) in the latter cell cultures were monitored daily through biochemical analyzer. As of P30, it was observed a 4.4 times reduction in productivity, a 13 % reduction in metabolic yield, and a significant change in cell growth. Secretion of MRSA-antiPBP2a mAb should be obtained through the culture of hybridomas up to P20 in order to keep its stability.  相似文献   

2.
单克隆抗体在生物学和医学研究领域中显示了极大的应用价值,是免疫检验中的新型试剂,是生物治疗的导向武器。作为医学检验试剂,单克隆抗体可以充分发挥其优势,如特异性好,灵敏度高,更便于质量控制,利于标准化和规范化。传统的方法是利用小鼠腹水制备单克隆抗体,但是近几十年杂交瘤细胞体外大规模培养制备单克隆抗体技术也在不断发展。特别是单克隆抗体在疾病诊断和治疗方面的需求,更进一步促进了杂交瘤细胞体外培养生产技术的发展,体外培养杂交瘤细胞生产的单克隆抗体已应用到许多方面。由于杂交瘤细胞的半贴壁性质,无论是悬浮培养还是贴壁培养,均可进行杂交瘤细胞的体外大规模培养。针对应用于体外诊断试剂的杂交瘤细胞体外培养制备单克隆抗体进行综述,主要包括中空纤维细胞培养和生物反应器细胞培养方法,以及不同培养方法优化的进展。  相似文献   

3.
Genome‐scale modeling of mouse hybridoma cells producing monoclonal antibodies (mAb) was performed to elucidate their physiological and metabolic states during fed‐batch cell culture. Initially, feed media nutrients were monitored to identify key components among carbon sources and amino acids with significant impact on the desired outcome, for example, cell growth and antibody production. The monitored profiles indicated rapid assimilation of glucose and glutamine during the exponential growth phase. Significant increase in mAb concentration was also observed when glutamine concentration was controlled at 0.5 mM as a feeding strategy. Based on the reconstructed genome‐scale metabolic network of mouse hybridoma cells and fed‐batch profiles, flux analysis was then implemented to investigate the cellular behavior and changes in internal fluxes during the cell culture. The simulated profile of the cell growth was consistent with experimentally measured specific growth rate. The in silico simulation results indicated (i) predominant utilization of glycolytic pathway for ATP production, (ii) importance of pyruvate node in metabolic shifting, and (iii) characteristic pattern in lactate to glucose ratio during the exponential phase. In future, experimental and in silico analyses can serve as a promising approach to identifying optimal feeding strategies and potential cell engineering targets as well as facilitate media optimization for the enhanced production of mAb or recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2009;102: 1494–1504. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

5.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

6.
The influence of coating polystyrene tissue culture plates with different proteins on murine hybridoma cell growth and antibody production was investigated. Fibronectin, collagen I, bovine serum albumin and laminin were used to coat NUNC® and COSTAR® cell culture plates. Cell number and antibody concentration in culture fluids were quantified as indicators for cell viability, proliferation and productivity. Adhesive behaviour, morphology, expression of surface receptors of hybridoma cells and the presence of tyrosine-phosphorylated proteins in cell lysates were characterized by cell adhesion experiments, microscopy, flow cytometry and Western Blot analysis.It was shown that coatings with fibronectin (0.2 μg/ml) lead to a substantial improvement of cell growth by 50–70% and an increase of monoclonal antibody production by 100–120%.Collagen I coatings showed an improvement in cell growth by 30–70% and by 60% for the production of monoclonal antibodies. Coatings with BSA and laminin had minor effects on these parameters. It was found that the hybridoma cell lines used in this study did not express the α2-chain of the α2β1-integrin, which is responsible for binding to collagen and laminin.However, the presence of β1-integrin on the cell surface was shown, which should enable hybridoma cells to bind fibronectin. We propose, therefore, that fibronectin adsorption to cell culture materials may be a promising approach to enhance the production of monoclonal antibodies by cultivated hybridoma cells.  相似文献   

7.
A kinetic study of a hybridoma cell line that produces monoclonal antibodies against lactoferrin was carried out. A well defined protein-free culture medium was employed to facilitate the subsequent purification of the monoclonal antibodies. It should be highlighted that most of the existing work has been carried out employing culture media enriched with fetal bovine serum (FBS). Cell growth and monoclonal antibody production were monitored and kinetic parameters were determined. Besides, fundamental nutrients such as glucose and glutamine, inhibitory products such as ammonium and lactate, and several amino acids were followed throughout the culture. Additional experiments were carried out supplementing the medium with glutamine and ammonium, none of them resulting the key compound that halted the cell growth under the tested conditions and an unstructured model can be used to describe the system. Finally, agitation of the culture by a rocker set-up has shown high values of the specific death rate.  相似文献   

8.
For the production of monoclonal antibodies against pp60src and the gag precursor protein Pr76gag, the spleens of mice bearing tumors that had been induced by avian sarcoma virus Schmidt-Ruppin D-transformed cells were used. One hybridoma culture produced antibodies that were directed against the p19 portion of the gag precursor. However, no antibodies directed against pp60src could be detected in any of the hybridoma supernatants. The anti-p19-producing hybridoma culture was cloned twice in soft agar, and a stable clone was used for the production of high-titer ascites fluid in mice. The monoclonal antibodies belonged to the immunoglobulin G subclass 2b. The antibodies precipitated Pr76gag and the processed virion-associated p19, as well as the 75,000-molecular-weight gag fusion protein from avian erythroblastosis virus-transformed bone marrow cells. Also, viral ribonucleoprotein complexes were specifically precipitable, indicating that they contain p19 molecules.  相似文献   

9.
Despite considerable progress in the development of cell culture techniques, including the development of the serum- and protein-free media that now routinely support hybridoma and mammalian cell growth, fetal bovine serum (FBS) supplemented media are still commonly used: a practice that raises ethical, scientific and safety concerns. The use of FBS in hybridoma culture media is examined here, with regards to the development and production of monoclonal antibodies (mAbs), and it is our recommendation that researchers adopt serum-free cell culture methods to reduce animal use in this area.  相似文献   

10.
The main disadvantages of foetal calf serum as the world-wide common serum supplement for cell growth are its content of various proteins of variable concentrations between batches as well as its high cost. The use of serum-free and protein-free media is gradually becoming one of the goals of cell culture especially for standardizing culture conditions or for simple purification of cell products like monoclonal antibodies. The mouse hybridoma cells 14/2/1 were cultivated either in protein-free UltraDOMA medium or in serum-containing RPMI medium with and without microcarriers to generate high quantities of monoclonal antibodies against neuroblastoma tumour cells. Cell growth rate, IgG production, viability, glucose and lactate concentrations, attachment rate and doubling time have been used as investigation criteria. Modifications of culture procedures (static or stirred), inoculum density, and microcarrier concentration caused an improvement of monoclonal antibody production. The kinetics of antibody synthesis was best in spinner culture with 2 ml of microcarriers in protein-free medium. These results of short-term microcarrier culture in stirred spinner flasks indicate that IgG yields in protein-free medium 2.5-fold higher to those in serum-supplemented medium can be achieved.  相似文献   

11.
A new serum-free medium for monoclonal antibody production   总被引:3,自引:0,他引:3  
A new serum-free, defined-protein, medium for the growth of murine hybridoma cells and the production of monoclonal antibodies has been developed. Designated WRC 935 medium, this formulation supports the growth of hybridoma cells in higher numbers, and promotes better cell viabilities and increased monoclonal antibody levels compared to growth in DMEM supplemented with 10% fetal bovine serum or in a DMEM/F-12 serum-free mixture. In suspension cultures, WRC 935 medium typically promoted cell growth to densities over two million cells per milliliter. This medium also promoted the rapid growth of cells following their transfer from liquid nitrogen storage. WRC 935 medium is especially useful for high density cell culture production methods using hollow-fiber bioreactors. Hollow-fiber bioreactors using this medium produced antibody at an average rate of 11 mg/day, and the antibody concentration ranged from 10 to 40 mg/ml.  相似文献   

12.
13.
A dual streaming potential device was used for determining the content of monoclonal antibodies in cultivation medium for hybridoma cells. Samples of culture medium were analyzed as discrete pulses, as a continuous flow of constant concentration as well as with fluctuating concentrations. Tests were done with two subclasses of IgG as well as with IgM. Finally, the analytical device was applied to the registration of production of monoclonal antibodies in a cultivation.  相似文献   

14.
Growth profiles of the batch and fed-batch culture of hybridoma cells producing monoclonal antibody were simulated using an unstructured model. The model describes the production of cellular macromolecules and monoclonal antibody, the metabolism of glucose and glutamine with the production of lactate and ammonia, and the profiles of cell growth in batch and fed-batch culture. Equations describing the cells arrested in G1 phase [T.I. Linardos, N. Kalogerakis, L.A. Behie, Biotechnol. Bioeng. 40 (1992) 359–368; E. Suzuki, D.F. Ollis, Biotechnol. Bioeng. 34 (1989) 1398–1402] were included in this model to describe the increase of the specific antibody productivity in the near-zero specific growth rate, which was observed in the recent experiments in fed-batch cultures of this study and the semi-continuous culture of hybridoma cells [S. Reuveny, D. Velez, L. Miller, J.D. Macmillan, J. Immnol. Methods 86 (1986) 61–69]. This model predicted the increase of specific antibody production rate and the decline of the specific production rate of cellular macromolecules such as DNA, RNA, protein, and polysaccharide in the late exponential and decline phase of batch culture and at lower specific growth rates in the fed-batch culture.  相似文献   

15.
A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non-growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model-based optimization of the cell culture for MAb production in both batch and fed-batch systems.  相似文献   

16.
Dynamic optimization of hybridoma growth in a fed-batch bioreactor   总被引:4,自引:0,他引:4  
This study addressed the problem of maximizing cell mass and monoclonal antibody production from a fed-batch hybridoma cell culture. We hypothesized that inaccuracies in the process model limited the mathematical optimization. On the basis of shaker flask data, we established a simple phenomenological model with cell mass and lactate production as the controlled variables. We then formulated an optimal control algorithm, which calculated the process-model mismatch at each sampling time, updated the model parameters, and re-optimized the substrate concentrations dynamically throughout the time course of the batch. Manipulated variables were feed rates of glucose and glutamine. Dynamic parameter adjustment was done using a fuzzy logic technique, while a heuristic random optimizer (HRO) optimized the feed rates. The parameters selected for updating were specific growth rate and the yield coefficient of lactate from glucose. These were chosen by a sensitivity analysis. The cell mass produced using dynamic optimization was compared to the cell mass produced for an unoptimized case, and for a one-time optimization at the beginning of the batch. Substantial improvements in reactor productivity resulted from dynamic re-optimization and parameter adjustment. We demonstrated first that a single offline optimization of substrate concentration at the start of the batch significantly increased the yield of cell mass by 27% over an unoptimized fermentation. Periodic optimization online increased yield of cell mass per batch by 44% over the single offline optimization. Concomitantly, the yield of monoclonal antibody increased by 31% over the off-line optimization case. For batch and fed-batch processes, this appears to be a suitable arrangement to account for inaccuracies in process models. This suggests that implementation of advanced yet inexpensive techniques can improve performance of fed-batch reactors employed in hybridoma cell culture.  相似文献   

17.
Metabolism of monoclonal antibodies (MAb) during the growth of mouse hybridoma, producing MAb to phage lambda, has been studied. It was shown that the specific production of MAb decreased by 25-35% in the stationary phase of growth in comparison with the middle of the exponential growth phase, which was associated with the decrease in the rate of MAb synthesis. The secretion kinetics of MAb did not change during the growth of hybridoma cells. MAb did not degrade inside the cells and in the culture medium after being secreted. The ratio of the synthesis rate of MAb to that of cellular proteins increased from 7-10% in the exponential growth phase to 14-18% in the stationary phase, which points to a specific regulation of MAb synthesis in comparison with cellular proteins. Possible regulation mechanisms for synthesis of MAb and cellular proteins during the growth of hybridoma cells are discussed.  相似文献   

18.
In an attempt to obtain monoclonal antibodies specific to tumor-associated antigens. C3H/He mice were immunized with syngeneic MM2 tumor cells, and the primed spleen cells were fused with P3-X63-Ag8.653 myeloma cells. The outgrowth of hybridomas, however, was extremely low and monoclonal antibodies were not obtained. The reason for the low hybridoma growth was studied. It was found that MM2 cells used as the immunogen, the fusion partner myeloma cells and the resulting hybridomas shared at least one tumor-associated antigen, namely Q5 antigen. Because of this common antigen, cytotoxic cells, presumably cytotoxic T lymphocytes, which were lytic to the hybridomas, were induced during the culture for generation of the hybridomas. Removal of lysosome-rich cells, including cytotoxic T lymphocytes, from the primed spleen cells before the fusion by treatment with leucine methyl ester, a lysosomotropic agent, drastically improved the outgrowth of hybridomas. By this method, seven stable hybridoma clones producing monoclonal antibodies specific to tumor-associated antigens were obtained. Two of the seven clones were found to secrete monoclonal IgM species, which reacted with the extra-cellular region of the Q5 antigen. This procedure will be an option when production of monoclonal antibodies specific to cell-surface antigens is intended and outgrowth of hybridomas is unexpectedly low.  相似文献   

19.
Protein synthesis in mammalian cells can be observed in two strikingly different patterns: 1) production of monoclonal antibodies in hybridoma cultures is typically inverse growth associated and 2) production of most therapeutic glycoproteins in recombinant mammalian cell cultures is found to be growth associated. Production of monoclonal antibodies has been easily maximized by culturing hybridoma cells at very low growth rates in high cell density fed- batch or perfusion bioreactors. Applying the same bioreactor techniques to recombinant mammalian cell cultures results in drastically reduced production rates due to their growth associated production kinetics. Optimization of such growth associated production requires high cell growth conditions, such as in repeated batch cultures or chemostat cultures with attendant excess biomass synthesis. Our recent research has demonstrated that this growth associated production in recombinant Chinese hamster ovary (CHO) cells is related to the S (DNA synthesis)-phase specific production due to the SV40 early promoter commonly used for driving the foreign gene expression. Using the stably transfected CHO cell lines synthesizing an intracellular reporter protein under the control of SV40 early promoter, we have recently demonstrated in batch and continuous cultures that the product synthesis is growth associated. We have now replaced this S-phase specific promoter in new expression vectors with the adenovirus major late promoter which was found to be active primarily in the G1-phase and is expected to yield the desirable inverse growth associated production behavior. Our results in repeated batch cultures show that the protein synthesis kinetics in this resulting CHO cell line is indeed inverse growth associated. Results from continuous and high cell density perfusion culture experiments also indicate a strong inverse growth associated protein synthesis. The bioreactor optimization with this desirable inverse growth associated production behavior would be much simpler than bioreactor operation for cells with growth associated production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
This paper proposes mathematical models that predict the physiology, growth behavior and productivity of hybridoma cells in both batch and fed-batch systems. Murine hybridoma 130-8F producing anti-F-glycoprotein monoclonal antibody was employed as a model system. A systematic approach based on metabolic flux analysis (MFA) was utilized to yield a dynamic model for predicting the concentration of significant metabolites over time. Correlation analysis was performed to formulate a Biomass Model for predicting cell concentration and viability as a function of the extracellular metabolite concentrations. The coefficients of the model equation were estimated by employing the Metropolis–Hastings algorithm. The Metabolites Model was combined with the Biomass Model to get an Integrated Model capable of predicting concentration values for substrates, extracellular metabolites, and viable and dead cell concentration by utilizing only starting concentrations as input. The prediction accuracy of the model was tested by using experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号