首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasopressin analgesia: specificity of action and non-opioid effects   总被引:3,自引:1,他引:3  
J H Kordower  R J Bodnar 《Peptides》1984,5(4):747-756
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VP) increases pain thresholds. In the present study intracerebroventricular (ICV) administration of both arginine VP (AVP: 75-500 ng) and 1-deamino-8-D-arginine vasopressin (DDAVP: 150-500 ng) elevated tail flick latencies. Oxytocin (OXY, ICV), also elevated tail-flick latencies (150-1000 ng); however this increase was accompanied by "barrel-roll" seizure activity. VP analgesia was eliminated by pretreatment with 1-deamino-penicillamine-2(O-methyl)tyrosine-AVP (dPTyr(me)AVP: 500 ng, ICV), a VP antagonist, but not naloxone (1 or 10 micrograms, ICV), suggesting that VP modulates nonciceptive thresholds through its own binding sites. Conversely, pretreatment with naloxone (1 micrograms, ICV) but not dPTyr(me)AVP (1 microgram, ICV) attenuated the analgesic efficacy of systemic morphine (10 mg/kg), further dissociating VP and central opiate analgesic processes. Finally, systemic pretreatment with dexamethasone potentiated VP analgesia. These data support the notion that VP is a specific non-opioid pain inhibitor.  相似文献   

2.
These studies examined the effect of cocaine on the analgesia produced by systemically and centrally administered opioid agonists. Cocaine (50 mg/kg, s.c.) increased the analgesic potency of systemic, ICV and IT morphine; and the ICV and IT analgesic effects of the delta selective peptide, [D-Pen2,D-Pen5]enkephalin (DPDPE). Cocaine also increased the analgesic potency of the mu selective ligand [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAGO) administered ICV. However, cocaine did not alter the ED50 for IT DAGO. GC-MS studies indicated that brain cocaine concentration was approximately 3.0 micrograms/g wet weight 45 min following s.c. administration. These results suggest that cocaine-induced increases in opioid analgesic potency are mediated at brain mu and delta receptors and spinal mu receptors. Furthermore, there might be functional differences between spinal and supraspinal sites at which DAGO produces analgesia.  相似文献   

3.
J R Glyn  J M Lipton 《Peptides》1981,2(2):177-187
ACTH (1--24) and alpha-melanotropin (alpha-MSH), peptides previously shown to influence body temperature when administered centrally and to occur naturally in brain regions important to temperature control, were injected intracerebroventricularly (ICV) in rabbits. The peptides in doses of 1.25, 2.5 and 5.0 micrograms produced dose-related hypothermias in a 23 degrees C environment, and greater decreases in body temperature when the experiments were repeated in the cold (10 degrees C), but the largest dose had no effect on temperature in the heat (30 degrees C). These results indicate that the peptides do not reduce the central set-point of temperature control. Rather, they appear to selectively inhibit heat conservation and production responses. Five microgram of ACTH reversed vasoconstriction and inhibited rises in temperature caused by leukocytic pyrogen (LP) given IV and ICV. The same dose of alpha-MSH also reduced fever produced by IV and ICV LP, but the reduction was not as great as after ACTH. Both peptides (5 micrograms) also reduced temperature rises and vasoconstriction caused by ICV PGE2. ACTH reduced d-amphetamine-induced hyperthermia without altering vasoconstriction which suggests that this peptide can reduce temperature rises by inhibiting heat production alone. One of the most important findings was that the peptides are antipyretic in that they reduce fever at doses (0.25 microgram, ICV) that do not affect normal temperature. The powerful effects of these peptides on resting body temperature, hyperthermia and fever, together with their presence in brain tissue important to temperature control, suggest that the endogenous central peptides participate in thermoregulation, perhaps by limiting fever and influencing normal temperature.  相似文献   

4.
This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opioids which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 hr or unstressed were injected ICV with either saline or 2.5 micrograms of beta-funaltrexamine (beta-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia (tail-flick assay) or were sacrificed and opioid binding in brain was determined. [3H]D-Ala2NMePhe4-Gly5(ol)enkephalin (DAGO) served as a specific ligand for mu- opioid receptors, and [3H]-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. Beta-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with beta-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received beta-FNA while unstressed, consistent with the hypothesis that stress induces release of endogenous opioids that would protect opioid receptors from alkylation by beta-FNA. beta-FNA caused small and similar decreases in [3H]-DAGO binding in brain of both stressed and unstressed animals. Stressed rats injected with saline tended to have increased levels of [3H]DAGO and [3H]-bremazocine binding compared to the other groups. This outcome may be relevant to the tolerance to morphine analgesia caused by stress.  相似文献   

5.
Morphine injected into the rat cerebral ventricles had a marked analgesic effect, while no effect was observed with pentazocine and naloxone or nalorphine caused a strong hyperalgesia. Administered systemically (IP) naloxone and nalorphine caused a transitory analgesia followed by a long lasting hyperalgesic effect; morphine and pentazocine showed only an analgesic effect. It was concluded that the site of analgesic action of opioid-antagonists is peripheral rather than central. The peptidase-resistant enkephalin-analog, BW 180c, which does not cross the blood brain barrier, caused a marked analgesia by IP administration to paws made hyperalgesic by PGE2 or carrageenin. It is suggested that agents derived from morphine, morphine-antagonists, enkephalins or cGMP devoid of central effect but having a strong peripheral effect may constitute a new class of safer analgesics.  相似文献   

6.
The effects of centrally administered kentsin (H-Thr-Pro-Arg-Lys-OH) on intestinal motility and on pain perception were investigated in rats chronically equipped with lateral ventricle catheters. Intestinal motility was recorded electromyographically from electrodes placed on the duodeno-jejunum; analgesia was evaluated by the hot-plate and tail-flick tests. Kentsin (4.0 ug/kg), injected intracerebroventricularly (ICV) 2 hours after the beginning of a meal, restores the "fasted" i.e. the migrating myoelectric complex of intestinal motility, while a 5 times higher dose administered subcutaneously was inactive. The ICV effect of kentsin was blocked by previous ICV administration of naloxone (400 ug/kg). In contrast, kentsin administered ICV (40 ug/kg) or SC (200 ug/kg) did not affect significantly (P greater than 0.05) the time latency in the two analgesic tests during 90 minutes after its administration and did not significantly modify the analgesic effects of (D5-Ala2, Met5) enkephalinamide. We conclude that kentsin when centrally administered acts on opiate receptors to alter gastrointestinal motility but without effects on pain perception.  相似文献   

7.
Morphine injected into the rat cerebral ventricles had a marked analgesic effect, while no effect was observed with pentazocine and naloxone or nalorphine caused a strong hyperalgesia. Administered systemically (IP) naloxone and nalorphine caused a transitory analgesia followed by a long lasting hyperalgesic effect; morphine and pentazocine showed only an analgesic effect. It was concluded that the site of analgesic action of opioid-antagonists is peripheral rather than central. The peptidase-resistant enkephalin-analog, BW 180c, which does not cross the blood brain barrier, caused a marked analgesia by IP administration to paws made hyperalgesic by PGE2 or carrageenin. It is suggested that agents derived from morphine, morphine-antagonists, enkephalins or cGMP devoid of central effect but having a strong peripheral effect may constitute a new class of safer analgesics.  相似文献   

8.
Prostaglandin hyperalgesia, V: a peripheral analgesic receptor for opiates   总被引:1,自引:0,他引:1  
Prostaglandin E2 injected in the rat paw causes hyperalgesia which is antagonized by local injections of opiate and opiate antagonists. In the present investigation in rats it is shown that naloxone has an analgesic effect at doses as low as 2 micrograms/site, injected into the rat hind paw. At a dose that has no analgesic effect (1 microgram/site) naloxone antagonized the analgesia produced by either local or systemic administration of morphine. Local administration of levorphanol (50 micrograms/site) caused a 50% reduction in the intensity of the hyperalgesia induced by prostaglandin E2. A dose four times greater of its isomer, dextrorphan, had little analgesic effect. The present results support the suggestion that this peripheral analgesia is the result of an action of opiates in receptors located at the nociceptors.  相似文献   

9.
M.T. Murphy  J.M. Lipton 《Peptides》1982,3(5):775-779
In these experiments IV, ICV and intra-gastric administration of α-MSH reduced fever caused by injections of leukocytic pyrogen (LP). 2.5 μg α-MSH injected IV reduced fever caused by IV LP, more so in rabbits over 3 yrs old than in those under 2 yrs of age; 5 mg of acetaminophen given IV had no antipyretic effect in either age group. ICV administration of 25 ng α-MSH reduced fever caused by IV LP injection in the older but not in the younger rabbits. α-MSH given IV (2.5 μg) also lowered fever induced by ICV injection of LP in older but not in younger animals. Both older and younger rabbits showed reductions in fever evoked by IV LP after 2.5 mg α-MSH was given by gastric tube. The results indicate that this peptide which occurs naturally within the brain has potent antipyretic properties when given systemically, presumably as a result of a central antipyretic action. Greater sensitivity to central α-MSH in the older rabbits may account for the reduced febrile response seen in the aged. The findings support previous data which suggest that central α-MSH has a physiological role in the limitation of fever.  相似文献   

10.
J.A. Zimmer  J.M. Lipton 《Peptides》1981,2(4):413-417
Central administration of ACTH (1-24) reduces fever in normal rabbits in doses that have no effect on afebrile body temperature. Previous experimental and clinical reports indicate that peripheral administration of both ACTH and corticosteroids reduces fever, and since central injection of corticosteroids can also lower fever it might be that the antipyretic effect of intracerebroventricular (ICV) ACTH (1-24) is due to adrenal stimulation. To learn whether this endogenous central peptide can produce antipyresis independently, ACTH (1-24) was injected ICV in bilaterally adrenalectomized (ADX) rabbits made febrile by IV injections of leukocytic pyrogen (LP). ACTH (250 ng) given ICV reduced fever in these animals and had a slight hypothermic effect when given to the same rabbits when they were afebrile. Doses of 25-75 ng reduced fever without influencing normal body temperature. Intravenous injections of ACTH (2.5 micrograms) also lowered fever caused by IV LP in ADX rabbits. The present findings raise the possibility that release of endogenous central ACTH, and perhaps entry into the brain of circulating ACTH, the release of which is known to increase in fever, limits the magnitude of the febrile response by influencing central temperature controls.  相似文献   

11.
A Dray  L Nunan  W Wire 《Peptides》1986,7(2):323-329
The 36 amino acid peptide neuropeptide Y (NPY) has been found distributed in central structures associated with nociception and the actions of opioid analgesics. We therefore studied its central actions on reflex bladder contractions which we have shown to be inhibited by supraspinal and spinal opioid administrations in urethane anesthetized rats. Neuropeptide Y produced a dose related (0.5-2 micrograms per rat) inhibition of bladder contractions following intracerebroventricular (ICV) and spinal intrathecal (IT) administrations. These effects could not be antagonized by naloxone (2 micrograms, ICV or IT) or by ICI 174,864 [N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH: Aib = alpha-aminoisobutyric acid] (3 micrograms, ICV or IT). NPY (0.5-1 micrograms) reduced the ICV and IT effects of morphine but potentiated the action of the selective delta-receptor ligand [2-D-penicillamine, 5-L-penicillamine] enkephalin (DPLPE). The effect of the mu-selective opioid ligand [D-Ala2, Me-Phe4, Gly(ol)5] enkephalin (DAGO) were unaffected as were the submaximal ICV and IT actions of noradrenaline. It was concluded that NPY-induced inhibition of bladder activity was not due to a direct opioid receptor interaction. However since NPY consistently changed the activity of opioids (morphine and DPLPE), this suggested a possible physiological role in the regulation of opioid receptors, central neural excitability and thereby visceral activity.  相似文献   

12.
Amylin (AMY) is a peptide of pancreatic origin principally involved in the carbohydrate metabolism, but that may interfere with central and peripheral dopamine (DA) pathways. The peptide, injected intracerebroventricularly (ICV) at the dose of 2.5 microg/rat, induced a decrease of copulatory activity in good copulators (GCO) and sluggish (SLU) male rats. The dose of 0.1 microg/rat did not affect significantly the sexual behavior of GCO rats, whereas AMY 0.5 microg/rat increased only the latency and reduced the frequency of ejaculation. At the dose of 2.5 microg/rat AMY antagonized the activation of sexual behavior induced by the DA receptor agonist, apomorphine administered subcutaneously (SC) at the dose of 100 microg/kg. Moreover, this inhibitory effect was blocked by the calcitonin gene-related peptide and AMY receptor antagonist, CGRP (8-37) fragment (injected ICV at the dose of 1 microg/rat). These data suggest that AMY may exert inhibitory effects on male sexual behavior in rats, probably interfering with central DA neurotransmission and with CGRP receptors.  相似文献   

13.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

14.
To explore the hypothesized integrative function of corticotropin releasing hormone (CRH) in the stress response, stress-related behaviors including antinociception were studied in rats after either intracerebroventricular (ICV) or peripheral administration of CRH. The effects of low-dose (0.3 microgram) and high-dose (3.0 micrograms) ICV-CRH were compared to those of vehicle, employing a within-S design. The two doses yielded comparable behavioral changes suggestive of increased arousal and stress. These changes were characterized by significant increases in grooming, walking, burrowing, self-gnawing, and pica, and decreases in rearing and sleeping. None of these effects of ICV-CRH were obtained with peripheral administration of the same doses. The hot-plate test of analgesia failed to show a significant effect of ICV-CRH or peripherally administered CRH. A between-S experiment incorporating both the tail-flick and the hot-plate tests of analgesia compared ICV-CRH (3.0 micrograms) with vehicle. ICV-CRH did not affect antinociceptive responding in either of these tests. In contrast, ICV morphine (10 micrograms) yielded potent analgesia in both tests. Thus, with doses of ICV-CRH yielding clear evidence of stress-related behavior, no evidence of analgesia was obtained. These findings question the possible role of central CRH systems in antinociceptive processes.  相似文献   

15.
To determine whether or not the CNS inhibitory activity of eel calcitonin (eCT) on adenylyl cyclase is the endocellular mechanism underlying the antinociceptive effect of the peptide, as shown for morphine analgesia, we administered Bordetella pertussis toxin (PTX) by intracerebroventricular (ICV) injection (0.5 microgram/rat) to block the receptor-mediated inhibition of adenylyl cyclase. In PTX-treated rats there was no change in eCT (2.5 micrograms/rat, ICV)-induced antinociceptive activity (hot-plate test) nor in eCT (100 ng/rat, ICV) inhibition of gastric acid secretion (Shay test) whereas morphine (5 micrograms/rat, ICV) analgesia was significantly reduced. In vitro studies showed no reduction of eCT binding in the CNS of rats treated with PTX in vivo. Moreover, PTX treatment did not change the inhibitory effect of eCT on adenylyl cyclase in isolated membranes from rat striatum in contrast with opiates (DAME and morphine) whose effects were lost. As PTX is known to inactivate the guanidine binding inhibitory protein Gi, these data suggest that a G protein, distinct from the Gi protein involved in the coupling of opiate receptors into a functional response, could be responsible for regulating the intracellular pathways resulting in eCT-induced antinociceptive effect and inhibition of gastric acid secretion.  相似文献   

16.
Experiments were performed to investigate the effects of intraperitoneally administered undecapeptide substance P (SP), its N-terminal fragment SP(1-7) (SPN) and the C-terminal analog [pGlu6]-SP(6-11) (SPC) on inhibitory avoidance learning, using a one-trial up-hill avoidance task. In Experiment 1 rats were injected with either SP (50 micrograms/kg), SPN (3.3, 33, 167, 333 micrograms/kg) or SPC (2.7, 27, 134, 268 micrograms/kg) immediately after the training trial. Controls received the diluent vehicles. When tested 24 hr later, rats injected with 50 micrograms/kg SP (37 nmol/kg) and 167 micrograms/kg SPN (185 nmol/kg) exhibited longer step-up latencies than vehicle-treated controls. None of the other doses of SPN nor of the C-terminal fragment influenced performance. In Experiment 2, 167 micrograms/kg SPN or vehicle was injected posttrial either immediately or 5 hr after the training trial. Retention latencies 24 hr later were longer for rats treated with 167 micrograms/kg SPN immediately after the training trial. Performance of the SPN 5-hr delay group did not differ from that of the vehicle-injected controls, ruling out proactive effects of SPN on recall.  相似文献   

17.
心房钠尿肽的中枢性心血管和肾效应   总被引:1,自引:1,他引:0  
赵工  骆鸿 《生理学报》1991,43(6):537-547
在麻醉大鼠观察了颈动脉、脊髓蛛网膜下腔和侧脑室内注射心房钠尿肽(Atrial natri-uretic peptide,ANP)后,血压,心率或/和尿量、尿钠和尿钾的变化,并观察了 ANP 对血管紧张素Ⅱ(AGⅡ)中枢效应的影响。结果如下:(1)在大鼠头部交叉循环条件下,经受血鼠颈总动脉内注射α-人心房钠尿多肽(α-human atrial natriurctic polypeptide,α-hANP)(15μg/kg)后,受血鼠平均动脉压(MAP)无改变,而供血鼠的 MAP 降低,⊿MAP为-2.4±0.84kPa(-18±6.3mmHg,P<0.05),(2)脊髓蛛网膜下腔注射心房肽,Ⅱ(AtriopeptinⅡ,APⅡ)(5μg/kg)对血压、心率和尿量无明显影响;(3)侧脑室注射 APⅡ(20μg/kg)后血压和心率无显著改变,尿量仅在注射后第30至50min 时显著增加,而尿钠无改变;(4)侧脑室注射 AGⅡ(1μg/kg),血压升高,⊿MAP 为1.3±0.17kPa(10±1.3mmHg,n=10,P<0.001)。注射1h 后,尿量增加106%(P<0.01),尿钠增加642%(P<0.01);(5)事先侧脑室注射 APⅡ(20μg/kg),2min 后再注入 AGⅡ(1μg/kg),AGⅡ的中枢升压效应不受影响,⊿MAP为1.5±0.25kPa(11±1.9mmHg,n=7,P<0.01),而尿量和尿钠的增值明显减小。以上结果表明,ANP 难于透过血脑脑脊血屏障,可能与其分子量较大有关。在静脉注射 ANP 所致降压效应中,似无中枢机制的参与。ANP 对 AGⅡ  相似文献   

18.
M.F. Ren  C.H. Lu  J.S. Han 《Peptides》1985,6(6):1015-1020
Intrathecal injection of subanalgesic doses of morphine (7.5 nmol) and dynorphin-A-(1–13) (1.25 nmol) in combination resulted in a marked analgesic effect as assessed by tail flick latency in the rat. The analgesic effect of the composite dynorphin/morphine was dose-dependent in serial dilutions so that a composition of 1/8 of the analgesic dose of dynorphin and 1/3 that of morphine produced an analgesic effect equipotent to full dose of either drug applied separately. The analgesic effect induced by dynorphin/morphine mixture was not accompanied by motor dysfunction and was easily reversed by a small dose (0.5 mg/kg) of naloxone. Contrary to the augmentatory effect of dynorphin on morphine analgesia in the spinal cord, intracerevroventricular (ICV) injection of 20 nmol of dynorphin-A-(1–13) exhibited a marked antagonistic effect on the analgesia produced by morphine (120 nmol, ICV). The theoretical considerations and practical implications of the differential interactions between dynorphin-A-(1–13) and morphine in the brain versus spinal cord are discussed.  相似文献   

19.
L Bueno  J Fioramonti  M P Primi 《Peptides》1985,6(3):403-407
The effects of intracerebroventricular (ICV) and intravenous (IV) administration of human pancreatic growth hormone-releasing factor (hpGRF) on gastro-intestinal motility were examined in fasted and fed conscious dogs equipped with chronically implanted strain-gauges on the antrum and the jejunum. During the fasted state, hpGRF injected ICV at 0.1 micrograms . kg-1 or IV at 0.5 micrograms . kg-1 did not affect the cyclic occurrence of the migrating motor complex (MMC). This pattern was normally disrupted for 8-10 hours by a daily standard meal. Injected ventricularly (0.1 micrograms . kg-1) but not intravenously (0.5 micrograms . kg-1) 10-15 min after the daily meal, hpGRF significantly reduced (p less than 0.01) the duration of the jejunal fed pattern (2.0 +/- 1.4 vs. 8.4 +/- 1.1 hours for control) but not that of the stomach. This effect persisted when hpGRF (0.1 micrograms . kg-1 ICV) was administered after indomethacin (2 mg . kg-1 IM), naltrexone (0.1 mg . kg-1 IV) or domperidone (1 mg . kg-1 IV) but was abolished by a previous IV injection of metoclopramide (1 mg . kg-1). It was concluded that hpGRF is able to act centrally to control the pattern of jejunal motility in fed but not in fasted dog, its effect being probably mediated through dopaminergic pathways.  相似文献   

20.
家兔隔核中去甲肾上腺素对皮肤与内脏痛阈的影响   总被引:4,自引:0,他引:4  
汪溯  莫浣英 《生理学报》1989,41(2):128-135
本工作以电刺激内脏大神经或耳尖部皮肤测定清醒家兔内脏痛阈或皮肤痛阈,以探讨隔核去甲肾上腺素在内脏镇痛和皮肤镇痛中的作用以及与中脑导水管周围灰质(PAG)中内阿片肽系统的关系。实验观察到,双侧隔核内微量注射α受体激动剂可乐宁(10μg/2μl)或α受体阻断剂酚妥拉明(10μg/2μl)对内脏痛阈无明显影响。注入β受体激动剂异丙肾上腺素(1μg/2μl)使内脏痛阐明显升高;而注入β受体阻断剂心得安(1Cμg/2μl)则内脏痛阈明显降低。隔核内注入酚妥拉明(10μg/2μl)或心得安(10μg/2μl)均可使皮肤痛阈明显提高。提示,隔核内NA通过β受体调制内脏痛;通过α受体和β受体调制皮肤痛。隔核内注入异丙肾上腺素(1μg/2μl)明显地镇内脏痛,此作用可被PAG内注射纳洛酮(1μg/2μl)或注射抗亮啡肽抗血清(1:20,000)所减弱;但可使PAG内亮啡肽样物质释放量增加。这提示,隔核内NA的镇内脏痛作用与PAG的内阿片肽系统有关;其中亮非肽在这一过程中具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号