首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.  相似文献   

2.
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.  相似文献   

3.
A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.Planetary protection efforts work toward protecting (i) solar system bodies from contamination by terrestrial biological material (forward contamination), thus preserving opportunities for future scientific investigation, and (ii) the Earth from harmful contamination by materials returned from outer space (back contamination) (5). These approaches apply directly to the control and eradication of microorganisms present on the surfaces of spacecraft intended to land, orbit, fly by, or be in the vicinity of extraterrestrial bodies. Consequently, current planetary protection policies require that spacecraft be assembled and readied for launch in controlled clean room environments. To achieve these conditions and maintain compliance with good manufacturing practice regulations, robotic spacecraft components are assembled in ultraclean facilities. Much like facilities in the medical, pharmaceutical, and semiconductor sectors, National Aeronautics and Space Administration (NASA) spacecraft assembly clean rooms (SAC) are kept extremely clean and are maintained to the highest of industry standards (17). Filtered air circulation, controlled temperature and humidity, routine exposure to disinfectants and surfactants, and nutrient-limiting, oligotrophic conditions make it very challenging for microorganisms to persist in such environments, but these measures by no means eradicate biological contaminants entirely (18). Several investigations, both culture based and culture independent, have demonstrated that a variety of bacterial taxa are repeatedly isolated under clean room conditions (18, 24, 26; P. Vaishampayan, S. Osman, G. Andersen, and K. Venkateswaran, submitted for publication). However, despite a growing understanding of the diverse microbial populations present in SAC, predicting the true risk of any such microbes’ compromising the findings of extraterrestrial life detection efforts remains a significant challenge (30). A better understanding of the distribution and frequency at which high-risk contaminant microbes are encountered on spacecraft surfaces would significantly aid in assessing the threat of forward contamination (33).The purification of nucleic acids, subsequent PCR amplification, and shuttling of 16S ribosomal “fingerprint” genes from noncultivable microorganisms into genetically amenable lab strains of Escherichia coli have evolved into a gold standard of molecular means to elucidate the microbial diversity in a given sample. In theory, the cloning and sequencing of 16S ribosomal genes from each and every cell present, regardless of cultivability and inclusive of novel taxa, would result in a comprehensive survey of microbial communities on the surfaces of SAC and colocated spacecraft (24, 26). Unfortunately, the full-length sequencing of all 16S rRNA genes from environmental samples would be prohibitively expensive, making the approach unfeasible for generating comprehensive phylogenetic profiles of complex microbial communities.Attempting to infer population membership from clone libraries limited to hundreds or thousands of sequences has proven to be insufficient for detecting extremely low-abundance organisms. Recent analyses of phylogenetic DNA extracted from soil, water, and air revealed that laboriously derived clone libraries severely under-represent complex bacterial communities compared to very rapid (i.e., requiring only hours) DNA microarray approaches (1, 6, 11, 23, 36). One of the reasons for this is the high sensitivity of PhyloChip methodologies, which are able to detect organisms present in amounts below 10−4 abundance of the total sample (12). Numerous validation experiments using sequence-specific PCR have confirmed that taxa identified by the microarray were indeed present in the original environmental samples, despite their absence in corresponding clone libraries (3). This highlights the utility of the method compared to classical cloning. Although the analysis of each sample by the PhyloChip provides detailed information on microbial composition, the highly parallel and reproducible nature of this array allows tracking community dynamics over time and treatment. Even without prior sequence information, PhyloChip can identify specific microbial interactions that are key to particular changing environments.A comprehensive census of the microbial communities on the surfaces in three NASA SAC supporting two distinct missions was conducted. To ensure that the maximum diversity of resident microbiota was uncovered, subsamples from each clean room surface sampling were subjected to both DNA microarray protocols and conventional cloning and sequencing of 16S rRNA genes. This study, to our knowledge the first of its kind, focused on comparing the microbial diversity profiles resulting from DNA microarray analyses and conventional cloning and sequencing of 16S rRNA genes arising from a variety of low-biomass surfaces.  相似文献   

4.
Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft3) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues.  相似文献   

5.
The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.  相似文献   

6.
The primary objective of this study was to determine quantitatively and qualitatively the predominant types of microbial contamination occurring in conventional and laminar flow clean rooms. One horizontal laminar flow, three conventional industrial clean rooms, and three open factory areas were selected for microbiological tests. The results showed that as the environment and personnel of a clean room were controlled in a more positive manner with respect to the reduction of particulate contamination, the levels of airborne and surface microbial contaminants were reduced accordingly. The chief sources of microbial contamination were associated with the density and activity of clean room personnel. In addition, the majority of microorganisms isolated from the intramural air by air samplers were those indigenous to humans. Studies on the fallout and accumulation of airborne microorganisms on stainless-steel surfaces showed that, although there were no significant differences in the levels of microbial contamination among the conventional clean rooms, the type of microorganism detected on stainless-steel surfaces was consistently and significantly different. In addition, the "plateau phenomenon" occurred in all environments studied. It was concluded that the stainless-steel strip method for detecting microbial accumulation on surfaces is efficient and sensitive in ultra-clean environments and is the most reliable and practical method for monitoring microbial contamination in future class 100 clean rooms to be used for the assembly of spacecraft which will be sterilized.  相似文献   

7.
In the course of studying the influence of N-fertilization on N2 and N2O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity.  相似文献   

8.
Microbial characterization of the Mars Odyssey spacecraft and the Kennedy Space Center Spacecraft Assembly and Encapsulation Facility II (SAEF-II) was carried out by both culture-based and molecular methods. The most dominant cultivable microbes were species of Bacillus, with comamonads, microbacteria and actinomycetales also represented. Several spore-forming isolates were resistant to gamma-radiation, UV, H2O2 and desiccation, and one Acinetobacter radioresistens isolate and several Aureobasidium, isolated directly from the spacecraft, survived various conditions. Sequences arising in clone libraries were fairly consistent between the spacecraft and facility; predominant genera included Variovorax, Ralstonia and Aquaspirillum. This study improves our understanding of the microbial community structure, diversity and survival capabilities of microbes in an encapsulation facility and physically associated with colocated spacecraft.  相似文献   

9.
In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.The major issue of planetary protection is to prevent the contamination of extraterrestrial environments by terrestrial biomolecules and life forms. Furthermore, reverse contamination of Earth by extraterrestrial material is also a fundamental concern (1). In order not to affect or even to confound future life detection missions on celestial bodies, which are of interest for their chemical and biological evolution, spacecraft are constructed in so-called clean rooms and are subject to severe cleaning processes and microbiological controls before launch (9). Therefore, these clean rooms are considered extreme environments for microorganisms (47).Detailed planetary protection protocols for missions to Mars were designed for the Viking missions, which were launched in 1975, and about 7,000 samples were taken from the two Viking spacecraft during prelaunch activities in order to determine the cultivable microbial load (37). Besides human-associated bacteria (pathogens and opportunistic pathogens), which were predominant among the microbes detected in these samples, aerobic spore-forming microorganisms (Bacillus) were found frequently on spacecraft and within the facilities.Spores are the resting states of bacteria and are often highly resistant to heat, desiccation, and other abiotic stresses. These multiresistance properties of such spore-forming microorganisms make them perfect candidates for surviving a space flight, and thus, the main focus of attention has been on them. Furthermore, only the detection of aerobic spore-forming bacteria is currently included in space agencies'' planetary protection protocols for the quantitative determination of microbial burden on spacecraft.The presence of extraordinarily (UV-) resistant spores in spacecraft facilities has been reported (31), but it also has been proven that vegetative microbial cells (e.g., Deinococcus radiodurans and Halobacterium sp. strain NRC-1) can resist very harsh conditions, such as extreme doses of (UV and ionizing) radiation and desiccation (8, 11). Recent culture-based and molecular studies have shown that the microbial diversity on spacecraft and within the clean rooms is extraordinarily high and does include extremotolerant bacteria and even archaea (25, 30).The atmospheres of most planets and bodies within the reach of human exploration contain only traces of oxygen (Mars contains 0.13%), probably not enough to support terrestrial aerobic life as we know it (26, 44). Even though Mars'' surface is highly oxidizing and radiation exposed, the Martian subsurface, as well as those of other planets and bodies (like, e.g., Titan), has been discussed as an anaerobic biotope for possible life (4, 40).Therefore, the lack of studies of the existence of anaerobically growing microorganisms in spacecraft-associated clean rooms is quite surprising. One possible reason for this discrepancy might be that the cultivation of anaerobes is challenging. Already in 1969, Hungate published a method for the cultivation of strictly anaerobic methanogenic Archaea (20). Although this technique has undergone a few simplifications during past decades, the cultivation of anaerobes requires specialized and expensive equipment (e.g., anaerobic glove boxes and gas stations), practical experience, and skills in specific methodology. Nevertheless, by the application of anaerobic cultivation strategies, many fascinating microorganisms—such as Nanoarchaeum equitans, the first representative of the new archaeal phylum Nanoarchaeota, or Thermotoga maritima, a hyperthermophilic bacterium growing at up to 90°C (17, 18)—have successfully been isolated from diverse and sometimes extreme biotopes.Generally, there are different types of anaerobic organisms. Facultative anaerobes (like Escherichia coli) are able to adapt their metabolism and can grow under conditions with or without oxygen but prefer aerobic conditions. Aerotolerant anaerobes do not need oxygen for their growth and show no preference, and strict anaerobes (e.g., methanogens) never require oxygen for their reproduction and metabolism. Even more, obligate (strict) anaerobes can be growth inhibited or even killed by oxygen.The presence of anaerobic microorganisms (enriched using the BD GasPak system) in surface samples from U.S. clean rooms has rarely been reported. Members of the facultatively anaerobic genera Paenibacillus and Staphylococcus have been isolated in the course of a study about extremotolerant microorganisms (25). During molecular surveys of U.S. clean rooms, the 16S rRNA genes from strictly anaerobic microorganisms, such as the spore-forming genus Clostridium, have already been detected (29). Nevertheless, the cultivation of these microbes has not yet been successful.With the ExoMars mission impending, the European Space Agency (ESA) is organizing and funding a biodiversity study of the ESA''s clean rooms and the spacecraft therein. The microbiology of these special environments is characterized in detail by a combination of standard procedures, new cultivation approaches, and molecular methods that shall illuminate the presence of planetary protection-relevant microorganisms in these facilities. At the date of sampling, all the clean rooms harbored the Herschel Space Observatory, a spacecraft to be launched together with the Planck satellite in spring 2009, as of this writing. Herschel will be fitted with the largest mirror ever built for a space mission (3.5 m in diameter), and its main goal will be the exploration of the cold universe, i.e., the formation and evolution of proto-galaxies (35). The Herschel Space Observatory does not demand planetary protection requirements, but all clean rooms were in a fully operating state during the construction work. This gave us the opportunity to sample the microbial diversity in these extreme environments without bioburden control but under strict contamination-controlled conditions, with respect to particulates and molecular contamination.This paper presents the results from our attempts to isolate anaerobic and facultatively anaerobic microorganisms from samples of spacecraft and surfaces in European spacecraft-associated clean rooms. For this purpose, we have successfully applied Hungate technology for anaerobic culturing and used an assortment of noncommercial media for the cultivation of a broad variety of microorganisms. Besides the capability of anaerobic growth, many of our isolates revealed special physiological capacities (e.g., nitrogen fixation and autotrophic metabolism) that might be relevant for further planetary protection considerations.  相似文献   

10.
We investigated the bacterial communities of nine Bartonella-positive fleas (n = 6 Oropsylla hirsuta fleas and n = 3 Oropsylla montana fleas), using universal primers, clone libraries, and DNA sequencing. DNA sequences were used to classify bacteria detected in a phylogenetic context, to explore community assembly patterns within individual fleas, and to survey diversity patterns in dominant lineages.  相似文献   

11.
Green Ulvacean marine macroalgae are distributed worldwide in coastal tidal and subtidal ecosystems. As for many living surfaces in the marine environment, little is known concerning the epiphytic bacterial biofilm communities that inhabit algal surfaces. This study reports on the largest published libraries of near full-length 16S rRNA genes from a marine algal surface (5293 sequences from six samples) allowing for an in-depth assessment of the diversity and phylogenetic profile of the bacterial community on a green Ulvacean alga. Large 16S rRNA gene libraries of surrounding seawater were also used to determine the uniqueness of this bacterial community. The surface of Ulva australis is dominated by sequences of Alphaproteobacteria and the Bacteroidetes, especially within the Rhodobacteriaceae, Sphingomonadaceae, Flavobacteriaceae and Sapropiraceae families. Seawater libraries were also dominated by Alphaproteobacteria and Bacteroidetes sequences, but were shown to be clearly distinct from U. australis libraries through the clustering of sequences into operational taxonomic units and Bray–Curtis similarity analysis. Almost no similarity was observed between these two environments at the species level, and only minor similarity was observed at levels of sequence clustering representing clades of bacteria within family and genus taxonomic groups. Variability between libraries of U. australis was relatively high, and a consistent sub-population of bacterial species was not detected. The competitive lottery model, originally derived to explain diversity in coral reef fishes, may explain the pattern of colonization of this algal surface.  相似文献   

12.
Samples of soil collected from the Kennedy Space Center near the spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilzation techniques. The inactivation kinetics of the naturally occurring spores in soil were investigated by using dry heat and ionizing radiation, first separately and then simultaneously. Dry-heat inactivation kinetics of spores was determined at 105 and 125 C; radiation inactivation kinetics was determined for dose rates of 660 and 76 krads/h at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C, with a dose rate of 76 krads/h. Combined treatment was found to be highly synergistic, requiring greatly reduced radiation doses to accomplish sterilization of the population.  相似文献   

13.
Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.  相似文献   

14.
Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained.  相似文献   

15.
Microbiological profiles of the Viking spacecraft.   总被引:5,自引:3,他引:2       下载免费PDF全文
Planetary quarantine requirements associated with the launch of two Viking spacecraft necessitated microbiological assessment during assembly and testing at Cape Canaveral and the Kennedy Space Center. Samples were collected from selected surface of the Viking Lander Capsules (VLC), Orbiters, (VO), and Shrouds at predetermined intervals during assembly and testing. Approximately 7,000 samples were assayed. Levels of bacterial spores per square meter on the VLC-1 and VLC-2 were 1.6 x 10(2) and 9.7 x 10(1), respectively, prior to dry-heat sterilization. The ranges of aerobic mesophilic microorganisms detected on the VO-1 and VO-2 at various sampling events were 4.2 x 10(2) to 4.3 x 10(3) and 2.3 x 10(2) to 8.9 x 10(3)/m2, respectively. Approximately 1,300 colonies were picked from culture plates, identified, lypholipized, and stored for future reference. About 75% of all isolates were microorganisms considered indigenous to humans; the remaining isolates were associated with soil and dust in the environment. The percentage of microorganisms of human origin was consistent with results obtained with previous automated spacecraft but slightly lower than those observed for manned (Apollo) spacecraft.  相似文献   

16.
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.  相似文献   

17.
The bacterial loads of air, surfaces, and personnel in clean rooms are routinely monitored using a set of standard media. Bacteria that can grow on these media are a tiny fraction of the total numbers in any environment. A substantial proportion of bacteria long thought to be unculturable were recently shown to be oligophilic. Oligophile counts in clean rooms in our studies exceeded the standard plate counts by up to 2 orders of magnitude. They responded to disinfection routines in ways similar to the responses of conventional bacteria. We suggest that oligophiles are better tools than conventional bacteria for environmental monitoring in aseptic pharmaceutical production units.  相似文献   

18.
The bacterial loads of air, surfaces, and personnel in clean rooms are routinely monitored using a set of standard media. Bacteria that can grow on these media are a tiny fraction of the total numbers in any environment. A substantial proportion of bacteria long thought to be unculturable were recently shown to be oligophilic. Oligophile counts in clean rooms in our studies exceeded the standard plate counts by up to 2 orders of magnitude. They responded to disinfection routines in ways similar to the responses of conventional bacteria. We suggest that oligophiles are better tools than conventional bacteria for environmental monitoring in aseptic pharmaceutical production units.  相似文献   

19.
滨海盐土是重要的农业土地后备资源。微生物是土壤中物质循环的关键动力,然而盐度对土壤微生物群落特征影响的研究还很缺乏。本研究采集滨海地区的土壤样品,研究非盐、轻盐和高盐3组不同盐度对土壤细菌数量、多样性和群落构建的影响。结果表明: 与非盐和轻盐土壤相比,高盐土壤的脱氢酶活性和细菌数量显著降低,而细菌α多样性没有变化,细菌群落结构发生分异。利用零模型反演群落构建过程,发现盐度是细菌群落构建过程的主控因子,盐度主导的高确定性过程控制了滨海盐土细菌的群落结构。说明在现有的盐度范围内,高盐土壤中同样含有丰富的微生物种质资源,具有盐土改良的生物学基础,然而由于高确定性的群落构建机制,外源物种很难定殖于滨海盐土。因此,在利用微生物技术改良滨海盐土时,应尽可能筛选耐盐的土著菌种,提高定殖效率。  相似文献   

20.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号