首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color pattern polymorphisms and shows evidence of genetic structuring among regional populations, and the taxonomic status of regional populations has repeatedly been debated. We test whether observed structure is evidence for discrete gene flow barriers that might indicate isolation or instead reflects clinal variation associated with spatially limited dispersal in a complex landscape. We first consider color pattern variation and identify geographical patterns of B. bifarius color variation using cluster analysis. We then use climate data and a comprehensive set of B. bifarius natural history records with an existing genetic data set to model the distribution of environmentally suitable habitat in western North America and predict pathways of potential gene flow using circuit theory. Resistance distances among populations that incorporate environmental suitability information predict patterns of genetic structure much better than geographic distance or Bayesian clustering alone. Results suggest that there may not be barriers to gene flow warranting further taxonomic considerations, but rather that the arrangement of suitable habitat at broad scales limits dispersal sufficiently to explain observed levels of population differentiation in B. bifarius.  相似文献   

2.
Phenotypic polymorphism can constitute an inherent challenge for species delimitation. This issue is exemplified in bumble bees (Bombus), where species can exhibit high colour variation across their range, but otherwise exhibit little morphological variation to distinguish them from close relatives. We examine the species status of one of the most abundant North American bumble bees, Bombus bifarius Cresson, which historically comprised two major taxa, bifarius s.s. and nearcticus. These lineages are recognized primarily by red and black variation in their mid-abdominal coloration; however, a continuum from black (nearcticus) to red (bifarius s.s.) variation has led to their historic synonymization. Integrating mitochondrial and nuclear data and whole-genome sequencing, we reveal a high level of both mitochondrial and nuclear divergence delimiting two morphologically cryptic species – the red bifarius s.s. and the colour-variable (black to red) nearcticus. Population genomic analysis supports an absence of recent genomic admixture and a strong population structure between the two clades, even in sympatry. Species distribution models predict partially differentiated niches between the genetically inferred clades with annual precipitation being a leading differentiating variable. The bifarius s.s. lineage also occupies significantly higher elevations, with regions of sympatry being among the highest elevations in nearcticus. Our data also support a subspecies-level divergence between the broadly distributed nearcticus and the island population vancouverensis. In this paper, we formally recognize the two species, Bombus bifarius Cresson and Bombus vancouverensis Cresson, the latter including the subspecies B. vancouverensis vancouverensis comb.n. and B. vancouverensis nearcticus comb.n ., with vancouverensis the name bearer due to year priority.  相似文献   

3.
Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site‐associated DNA sequencing (RADseq) in two bumble bee species, Bombus vosnesenskii and Bombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A. Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure while B. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, with B. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, while B. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high‐elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.  相似文献   

4.
Mielichhoferia elongata, one of the so-called “copper mosses,” has a broad but highly disjunctive geographic distribution and is rare throughout its range. A genetic analysis of 30 populations based on a survey of 21 allozyme loci reveals the following. 1) Total gene diversity at the specific level is high (0.41). 2) Within-population diversity is low, and over 90% of all genetic variation is among rather than within populations (mean GST = 0.93). 3) There is little differentiation in allele frequencies between North American and European populations. 4) Populations consist of one to six multilocus genotypes; 13 of the populations appear to consist of a single clone. 5) Colorado populations contain a tremendous reservoir of genetic variation (88% of all alleles found in the species in North America and Europe occur in one or more Colorado populations). 6) Populations in the eastern and western United States, and in Europe, contain subsets of the allelic diversity found in Colorado. The genetic structure of M. elongata suggests repeated dispersal and founding of populations.  相似文献   

5.
Setaria viridis is an important self-pollinating, cosmopolitan weed of temperate regions worldwide. Allozyme markers were used to investigate genetic diversity and structure in 168 accessions (including four S. italica) collected mainly from North America and Eurasia. Genetic diversity in green foxtail, and its population genetic structure, provided important clues about this weed's evolutionary history. Genetic diversity was low, with marked population differentiation: the percentage of polymorphic loci was 25% (0.95 criterion); mean number of alleles per locus was 1.86; mean panmictic heterozygosity was 0.07; and the coefficient of population genetic differentiation was 0.65. A common genotype occurred in 25 accessions distributed in six countries from both the Old World and New World, in a wide variety of ecological situations. Relatively little genetic divergence occurred between Eurasia and North America, with Nei's unbiased genetic identity between the two regions equaling 1.0. Populations from these two continents also had equivalent genetic diversity. Within North America, regional differentiation was indicated by northern and southern groups separated at 43.5° N latitude. No geographic pattern in genetic diversity was found within Eurasia. The size of the geographic range from which populations were sampled was not an accurate indicator of the extent of genetic diversity found among populations from that region. These results suggest that present patterning among green foxtail populations in North America is the consequence of multiple introductions into the New World followed by local adaptation and regional differentiation. Finally, S. italica and several green foxtail varieties did not differ isozymatically from typical forms of green foxtail. This supports the view that S. italica and S. viridis are conspecific, that the former (foxtail millet) is a domesticated form of the latter, and also questions the taxonomic validity of formally recognizing morphological varieties within green foxtail.  相似文献   

6.
Climate oscillations have left a significant impact on the patterns of genetic diversity observed in numerous taxa. In this study, we examine the effect of Quaternary climate instability on population genetic variability of a bumble bee pollinator species, Bombus huntii in western North America. Pleistocene and contemporary B. huntii habitat suitability (HS) was estimated with an environmental niche model (ENM) by associating 1,035 locality records with 10 bioclimatic variables. To estimate genetic variability, we genotyped 380 individuals from 33 localities at 13 microsatellite loci. Bayesian inference was used to examine population structure with and without a priori specification of geographic locality. We compared isolation by distance (IBD) and isolation by resistance (IBR) models to examine population differentiation within and among the Bayesian inferred genetic clusters. Furthermore, we tested for the effect of environmental niche stability (ENS) on population genetic diversity with linear regression. As predicted, high‐latitude B. huntii habitats exhibit low ENS when compared to low‐latitude habitats. Two major genetic clusters of B. huntii inhabit western North America: (a) a north genetic cluster predominantly distributed north of 28°N and (b) a south genetic cluster distributed south of 28°N. In the south genetic cluser, both IBD and IBR models are significant. However, in the north genetic cluster, IBD is significant but not IBR. Furthermore, the IBR models suggest that low‐latitude montane populations are surrounded by habitat with low HS, possibly limiting dispersal, and ultimately gene flow between populations. Finally, we detected high genetic diversity across populations in regions that have been climatically unstable since the last glacial maximum (LGM), and low genetic diversity across populations in regions that have been climatically stable since the LGM. Understanding how species have responded to climate change has the potential to inform management and conservation decisions of both ecological and economic concerns.  相似文献   

7.
Setaria glauca (yellow foxtail), S. geniculata (knotroot foxtail), and S. faberii (giant foxtail) are important cosmopolitan weeds of temperate and tropical regions. Isozyme markers were used to investigate genetic diversity and population genetic structure in 94 accessions of yellow foxtail, 24 accessions of knotroot foxtail, and 51 accessions of giant foxtail, collected mainly from North America and Eurasia. Giant foxtail populations were nearly identical genetically, with only one population exhibiting isozyme polymorphism. Yellow and knotroot foxtail populations had low genetic diversity but marked population differentiation. Although the latter species are similar morphologically, they are readily distinguished electrophoretically, with Nei's genetic identity being 0.83. In both species, genetic divergence between accessions from Eurasia and North America was minimal. Populations from the native ranges had slightly greater genetic diversity than those from the respective introduced ranges. Yellow foxtail populations genetically clustered into Asian, European, and North American groups. Within North America, yellow foxtail populations from Iowa were genetically diverse whereas populations collected from other North American locations were nearly monomorphic for the same multilocus genotype. Knotroot foxtail populations in North America were genetically differentiated into northern and southern groups on either side of a line at ≈37° N latitude. No genetic patterning was evident in knotroot foxtail populations from Eurasia. In both yellow and knotroot foxtail, patterns of population genetic structure have been influenced by several factors, including genetic bottlenecks associated with founder events, genetic drift, and natural selection.  相似文献   

8.
Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949–1955 and 1975–1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline.  相似文献   

9.
Aquilegia elegantula Greene and A. caerulea James occur in montane and subalpine habitats in the southern Rocky Mountains of western North America. The red and yellow flowers of A. elegantula are nodding, odorless, protogynous, and secrete a concentrated (44%) sucrose nectar in the floral spurs. Seed set in flowers under pollinator exclosures was 12% while seed set in open-pollinated flowers was 65%. The flowers of A. elegantula are pollinated primarily by the Broad-tailed Hummingbird (Selasphorus platycercus [Swainson]) and by at least three species of pollen-foraging bumblebees, of which Bombus occidentalis Greene is the most common. The blue and white flowers of A. caerulea are erect, mildly fragrant, protandrous, and secrete a 26% sucrose nectar. Seed set in caged flowers in the field averaged 39%. in uncaged flowers 54%. The most important pollinators of A. caerulea are the crepuscular hawkmoth, Hyles (=Celerio) lineata (Fabricius) and ten species of pollen-foraging Bombus. The most abundant bumblebee species, B. occidentalis, is also a frequent nectar thief. Differences in pollination systems alone probably do not constitute an effective anti-hydridization mechanism between A. elegantula and A. caerulea, but do serve to reinforce differences in habitat and flowering time that distinguish the two species.  相似文献   

10.
Conservation action for species of concern requires that “designatable units” (e.g., species, subspecies, geographic races, genetically distinct forms) are clearly defined, or that the species complex is treated as a whole. Several species of bumble bee are currently threatened, and some of these have cryptic colouration (resembling other species), or form complexes that vary considerably in colour patterning. Here we address the taxonomy and distribution of Bombus occidentalis Greene and B. terricola Kirby, both of which are currently of conservation concern in North America. Bombus occidentalis includes two apparently monophyletic groups of COI barcode haplotypes (recently considered as subspecies) with ranges mostly separated by that of their sister species, B. terricola. The southern B. o. occidentalis ranges throughout the western United States and into western Canada from southern Saskatchewan and Alberta, and throughout British Columbia north to ca. 55°N; the northern B. o. mckayi Ashmead, is restricted to north of this in British Columbia, westernmost Northwest Territories, Yukon Territory and Alaska. Bombus o. mckayi exists, as far as is known, only with a “banded” colour pattern. By contrast, B. o. occidentalis occurs in both banded and non-banded colour patterns, although the southern banded colour pattern is geographically isolated from the northern subspecies. Bombus o. occidentalis has declined throughout its range, perhaps due in part to exposure to novel parasites. Despite having similar levels of parasitism (ca. 40 %) as the southern subspecies, B. o. mckayi appears to have stable populations at present. There is therefore compelling evidence that the two subspecies should be distinguished for conservation and management purposes. We present the evidence for their distinction and provide tools for subspecies recognition.  相似文献   

11.
12.
Mitochondrial DNA control region sequences of spotted owls (Strix occidentalis) allowed us to investigate gene flow, genetic structure, and biogeographic relationships among these forest-dwelling birds of western North America Estimates of gene flow based on genetic partitioning and the phylogeography of haplotypes indicate substantial dispersal within three long-recognized subspecies. However, patterns of individual phyletic relationships indicate a historical absence of gene flow among the subspecies, which are essentially monophyletic. The pattern of haplotype coalescence enabled us to identify the approximate timing and direction of a recent episode of gene flow from the Sierra Nevada to the northern coastal ranges. The three subspecies comprise phylogenetic species, and the northern spotted owl (S. o. caurina) is sister to a clade of California (S. o. occidentalis) plus Mexican spotted owls (S o lucida); this represents a novel biogeographic pattern within birds. The California spotted owl had substantially lower nucleotide diversity than the other two subspecies; this result is inconsistent with present patterns of population density A causal explanation requires postulating a severe bottleneck or a selective sweep, either of which was confined to only one geographic region.  相似文献   

13.
Bumblebees (Bombus spp.) have been declining rapidly in many temperate regions of the Old World. Despite their ecological and economic importance as pollinators, North American bumblebees have not been extensively surveyed and their conservation status is largely unknown. In this study, two approaches were used to determine whether bumblebees in that region were in decline spatially and temporally. First, surveys performed in 2004–2006 in southern Ontario were compared to surveys from 1971 to 1973 in the same sites to look at changes in community composition, in one of the most bumblebee diverse areas of eastern North America. Second, the extent of range decline for a focal species (Bombus affinis Cresson) was estimated by surveying 43 sites throughout its known native range in eastern Canada and the United States. Our study documents an impoverishment of the bumblebee community in southern Ontario over the past 35 years. Bombus affinis in particular was found to have declined drastically in abundance not only in southern Ontario but throughout its native range. The loss of any bumblebee species may result in cascading impacts on native fauna and flora and reduce agricultural production. Implications for the conservation of this important group of pollinators are discussed.  相似文献   

14.
The Asian longhorned beetle, (Coleoptera, Cerambycidae, Anoplophora glabripennis (Motschulsky)), is endemic to China and Korea and an important invasive insect in North America and Europe. We analyzed mitochondrial DNA sequence data of invasive populations of A. glabripennis in North America and Europe, and microsatellite allele frequency data of beetles from North America. We show that populations in New York City and Long Island NY; New Jersey, Chicago, IL, and Toronto, Canada have limited genetic diversity compared to populations in China. In addition, the data suggest that separate introduction events were responsible for many of the populations in North America and for European populations in Austria, France, Germany and Italy. Populations on Long Island, NY are suspected to have been initiated by the transport of cut wood from New York City. A. glabripennis beetles found in Jersey City, NJ appear to be derived from an expansion of the New York City, NY population, whereas beetles found in Linden, NJ are an expansion from the Carteret, NJ population. Limited genetic diversity did not stop this invasive insect from establishing damaging populations in North America. Founders of introduced A. glabripennis populations in North America and Europe are likely derived from populations in China that are themselves invasive, rendering difficult the identification of source populations. Invasiveness in an insect’s natural range could be an important predictor of potential pest status of introduced populations.  相似文献   

15.
Aim The European green crab (Carcinus maenas) expanded dramatically after its introduction to the west coast of North America, spreading over 1000 km in < 10 years. We use samples of Carcinus maenas collected over time and space to investigate the genetic patterns underlying the species’ initial establishment and spread, and discuss our findings in the context of the species’ life history characteristics and demography. Location The central west coast of North America, encompassing California, Oregon, and Washington (USA) and British Columbia (Canada). Methods We collected 1040 total samples from 21 sites representing the major episodes of population establishment and expansion along the west coast of North America. Microsatellite markers were used to assess genetic diversity and structure at different time points in the species’ spread, to investigate connectivity between embayments and to estimate both short‐term effective population sizes and the number of original founders. Assignment testing was performed to determine the likely source of the introduction. Results Carcinus maenas in western North America likely derived from a single introduction of a small number of founders to San Francisco Bay, CA from the east coast of North America. Throughout its western North American range, the species experiences periodic migration between embayments, resulting in a minor loss of genetic diversity in more recently established populations versus the populations in the area of initial establishment. Main conclusions Low genetic diversity has not precluded the ability of C. maenas to successfully establish and spread on the west coast of North America. An efficient oceanographic transport mechanism combined with highly conducive life history traits are likely the major drivers of C. maenas spread. Evidence for a single introduction underscores the potential utility of early detection and eradication of high‐risk invasive species.  相似文献   

16.
Aim Although hundreds of tree species have broad geographic ranges in the Neotropics, little is known about how such widespread species attained disjunct distributions around mountain, ocean and xeric barriers. Here, we examine the phylogeographic structure of a widespread and economically important tree, Cordia alliodora, to: (1) test the roles of vicariance and dispersal in establishing major range disjunctions, (2) determine which geographic regions and/or habitats contain the highest levels of genetic diversity, and (3) infer the geographic origin of the species. Location Twenty‐five countries in Central and South America, and the West Indies. Methods Chloroplast simple sequence repeats (cpSSR; eight loci) were assayed in 67 populations (240 individuals) sampled from the full geographic range of C. alliodora. Chloroplast (trnH–psbA) and nuclear (internal transcribed spacer, ITS) DNA sequences were sampled from a geographically representative subset. Genetic structure was determined with samova , structure and haplotype networks. Analysis of molecular variance (AMOVA) and rarefaction analyses were used to compare regional haplotype diversity and differentiation. Results Although the ITS region was polymorphic it revealed limited phylogeographic structure, and trnH–psbA was monomorphic. However, structure analysis of cpSSR variation recovered three broad demes spanning Central America (Deme 1), the Greater Antilles and the Chocó (Deme 2), and the Lesser Antilles and cis‐Andean South America (Deme 3). samova showed two predominant demes (Deme 1 + 2 and Deme 3). The greatest haplotype diversity was detected east of the Andes, while significantly more genetic variation was partitioned among trans‐Andean populations. Populations experiencing high precipitation seasonality (dry ecotype) had greater levels of genetic variation. Main conclusions Cordia alliodora displayed weak cis‐ and trans‐Andean phylogeographic structure based on DNA sequence data, indicative of historical dispersal around this barrier and genetic exchange across its broad range. The cpSSR data revealed phylogeographic structure corresponding to three biogeographic zones. Patterns of genetic diversity are indicative of an origin in the seasonally dry habitats of South America. Therefore, C. alliodora fits the disperser hypothesis for widespread Neotropical species. Dispersal is evident in the West Indies and the northern Andean cordilleras. The dry ecotype harbours genetic variation that is likely to represent the source for the establishment of populations under future warmer and drier climatic scenarios.  相似文献   

17.
Isolation and restricted gene flow can lead to genetic deterioration in populations. Populations of many species are increasingly becoming fragmented due to human impacts and active management is required to prevent further extinctions. Islands provide an ideal location to protect species from many mainland threatening processes such as habitat loss and fragmentation, disease and competition/predation from introduced species. However their isolation and small population size renders them prone to loss of genetic diversity and to inbreeding. This study examined two endemic and one introduced population of tammar wallaby (Macropus eugenii) on three islands in the Houtman Abrolhos Archipelago, Western Australia: East Wallabi (EWI), West Wallabi (WWI) and North Islands (NI). Nine autosomal and four Y-linked microsatellite loci, and sequence data from the mitochondrial DNA (mtDNA) control region were used to examine the impact of long-term isolation (EWI and WWI) and small founder size (NI) on genetic diversity and inbreeding. This study found all three populations had low genetic diversity, high levels of effective inbreeding and increased frequency of morphological abnormalities. Isolation has also led to significant inter-population genetic differentiation. These results highlight the importance of incorporating genetic management strategies when utilising islands as refuges for declining mainland populations.  相似文献   

18.
Summary This study used the microsatellite locus B10 to determine the frequency of colonies with multiple patrilines in a previously unexamined group, the North American bumble bees (Bombus). The effective mating frequency (me) was greater than 1 in six of 28 colonies. Five of 11 species tested showed at least one incidence of polyandry: four species from the subgenus Pyrobombus (B. bimaculatus, B. impatiens, B. mixtus, B. ternarius) and one species from the parasitic subgenus Psithyrus (B. citrinus). The B10 locus showed high cross-species amplification success for North American Bombus.  相似文献   

19.
Yang XM  Sun JT  Xue XF  Li JB  Hong XY 《PloS one》2012,7(4):e34567
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global F ST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China.  相似文献   

20.
Different characters of an organism may be correlated if genes control the allometric relationship between them. If genetic variation exists for such genes then the allometric relation itself is potentially subject to change by selection. In social insects allometric relations represent colony-level characters. If colonies differ in these relations and this variation leads to differential productivity among colonies, then selection on allometric relations can operate at the level of the colony. We assessed the extent of heritable, between-colony variation for the allometric coefficients relating proboscis ( = glossa) length to wing length for two bumble bee species (Bombus huntii and B. occidentalis). We found that in both species colonies did not differ significantly in slope (b) but did differ significantly in intercept (a) of the regression of glossa length on wing length. Within-colony variation of the intercept was estimated by randomly constituting groups of five workers from each colony and calculating the regression for each group. The intraclass correlation was then calculated from the between- and within-colony mean squares. We found significant intraclass correlations in both species, giving heritabilities of 0.5 ± 0.3 in B. hunti and 0.7 ± 0.3 in B. occidentalis. If this allometric relation affects colony foraging success and foraging environments vary geographically, then the intercept should exhibit corresponding geographic variation. We tested this prediction by comparing intercepts calculated using wild-caught B. vagans workers from Alberta, Ontario and Maine. We found that the intercepts did differ significantly between sites, with the bees from Alberta having a significantly smaller intercept than the bees from eastern North America. Our results illustrate the opportunity for selection on an allometric relation that directly affects the foraging success of individual bumble bee colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号