首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Berberine is a natural product isolated from herbal plants such as Rhizoma coptidis which has been shown to have anti-neoplastic properties. However, the effects of berberine on the behavior of breast cancers are largely unknown. To determine if berberine might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of berberine treatment on differential protein expression and redox regulation in human breast cancer cell line MCF-7 using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated that 96 and 22 protein features were significantly changed in protein expression and thiol reactivity, respectively and revealed that berberine-induced cytotoxicity in breast cancer cells involves dysregulation of protein folding, proteolysis, redox regulation, protein trafficking, cell signaling, electron transport, metabolism and centrosomal structure. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of berberine-induced cytotoxicity in breast cancer cells. The identified targets may be useful for further evaluation as potential targets in breast cancer therapy.  相似文献   

2.
A series of cinnamylideneacetophenones were synthesized via a modified Claisen–Schmidt condensation reaction and evaluated for cytotoxicity against breast cancer cells using the Alamar Blue™ assay. Derivatives 17 and 18 bearing a 2-nitro group on the B ring, exhibited sub-micromolar cytotoxicity in MCF-7 cells (IC50 = 71 and 1.9 nM), respectively. Derivative 17 also displayed sub-micromolar (IC50 = 780 nM) cytotoxicity in MDA-MB-468 cells. Additionally, 17 and 18 displayed significantly less cytotoxicity than the chemotherapeutic doxorubicin in non-tumorigenic MCF-10A cells. This study provides evidence supporting the continued development of nitro-substituted cinnamylideneacetophenones as small molecules to treat breast cancer.  相似文献   

3.
In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways.  相似文献   

4.
Alterporriol L, a new bianthraquinone derivative, was isolated from a marine fungus Alternaria sp. ZJ9-6B. The cytotoxic activity and anticancer mechanisms of alterporriol L towards breast cancer cells lines were detected using MTT assay, immunofluorescence, and flow cytometry. Simultaneously, the changes in morphological properties of cells were detected before and after treatment with alterporriol L by atomic force microscope (AFM) at a nanometer scale. MTT assay showed that alterporriol L could effectively inhibit the growth and proliferation, and there was a dose-dependent manner of cell death. Moreover, the alterporriol L could induce cancer cell apoptosis or necrosis. Furthermore, the reactive oxygen species, mitochondrial membrane potential, and cytosolic free calcium level were changed after treatment with alterporriol L, suggesting that alterporriol L played vital roles in breast cancer cells through destroying the mitochondrial. And all these alterations are in accord with changes of morphology detected by AFM, which suggested that the AFM is a useful tool to detect the morphological changes of the cancer cells.  相似文献   

5.
6.
《Cell metabolism》2022,34(1):90-105.e7
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

7.
MnCl2 induced manganese-containing superoxide dismutase (MnSOD) expression (mRNA, immunoreactive protein, and enzyme activity) in human breast cancer Hs578T cells. The induction of MnSOD immunoreactive protein in Hs578T cells was inhibited by tiron (a metal chelator and superoxide scavenger), pyruvate (a hydrogen peroxide scavenger), or 2-deoxy-d-glucose (DG, an inhibitor of glycolysis and the hexose monophosphate shunt), but not by 5,5-dimethyl-1-pyrroline-1-oxide (a superoxide scavenger), N-acetyl cysteine (a scavenger for reactive oxygen species and precursor of glutathione), diphenylene iodonium (an inhibitor of flavoproteins such as NADPH oxidase and nitric oxide synthase), or SOD (a superoxide scavenger). Northern blotting demonstrated that tiron or DG affected at the mRNA level, while pyruvate affected Mn-induced MnSOD expression at both the mRNA and protein levels. These results demonstrate that Mn can induce MnSOD expression in cultured human breast cancer cells. Mn also induced apoptosis and necrosis in these cells. Since inhibitors of Mn-induced MnSOD induction did not affect cell viability, MnSOD induction is probably not the cause of the Mn-induced cell killing.  相似文献   

8.
Previous experimental studies have shown that high dietary fat intake is associated with mammary carcinogenesis. In the current study, the effect of 5-LOX or 12-LOX inhibitors on human breast cancer cell proliferation and apoptosis, as well as the possible mechanisms were investigated. The LOX inhibitors, NDGA, Rev-5901, and baicalein all inhibited proliferation and induced apoptosis in MCF-7 (ER+) and MDA-MB-231 (ER-) breast cancer cell in vitro. In contrast, the LOX products, 5-HETE and 12-HETE had mitogenic effects, stimulating the proliferation of both cell lines. These inhibitors also induced cytochrome c release, caspase-9 activation, as well as downstream caspase-3, caspase-7 activation, and PARP cleavage. LOX inhibitor treatment also reduced the levels of anti-apoptotic proteins Bcl-2 and Mcl-1 and increased the levels of the pro-apoptotic protein bax. In conclusion, blockade of both 5-LOX and 12-LOX pathways induces apoptosis in breast cancer cells through the cytochrome c release and caspase-9 activation, with changes in the levels of Bcl-2 family proteins.  相似文献   

9.
10.
Breast cancer specific gene 1, also referred as synu-clein γ, was originally isolated from a human breasttumor cDNA library[1]. It reveals extensive sequencehomology to a family of neuronal cytosolic proteins,synuclein α and synuclein β[2,3]. Synuclein…  相似文献   

11.
Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP.  相似文献   

12.
13.
A series of novel curcumin analogs, symmetrical dienones, were previously shown to possess cytotoxic, anti-angiogenic and anti-tumor activities. Analogs 1 (EF24) and 2 (EF31) share the dienone scaffold and serve as Michael acceptors. We propose that the anti-cancer effects of 1 and 2 are mediated in part by redox-mediated induction of apoptosis. In order to support this concept, 1 and 2 were treated with l-glutathione (GSH) and cysteine-containing dipeptides under mild conditions to form colorless water-soluble adducts, which were identified by LC/MS. Comparison of the cytotoxic action of 1, 2 and the corresponding conjugates, 1-(GSH)2 and 2-(GSH)2, illustrated that the two classes of compounds exhibit essentially identical cell killing capabilities. Compared with the yellow, somewhat light sensitive and nearly water insoluble compounds 1 and 2, the glutathione conjugates represent a promising new series of stable and soluble anti-tumor pro-drugs.  相似文献   

14.
15.
Z Wang  X Shi  Y Li  J Fan  X Zeng  Z Xian  Z Wang  Y Sun  S Wang  P Song  S Zhao  H Hu  D Ju 《Cell death & disease》2014,5(12):e1563
Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC.Breast cancer, the most common cause of cancer death in women, is a kind of complex and heterogeneous neoplasm.1 Approximately 15% of breast carcinomas are triple-negative breast cancers (TNBCs), which have high rates of recurrences and mortality.2 TNBCs are defined by the lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor type 2 (HER2). These tumors are characterized by clinically aggressive behaviors, high recurrence rate and poor prognosis. Owing to lack of targeted therapies (such as hormone therapy or anti-HER2 therapy), currently chemotherapy is the primary treatment for TNBC.3 Therefore, investigating new therapeutic approaches is urgently needed for improving the clinical outcome of TNBC therapy.Recently, deprivation of l-arginine has been a potential therapeutic method for cancers.4 By culturing cells in the arginine-free media, a variety of human cancer cells have been found to be auxotrophic for arginine, depletion of which resulted in cell death. Importantly, recombinant human arginase (rhArg) has shown potent anticancer effect in acute myeloid leukemia and acute lymphoblastic T-cell leukemia and solid tumors in vitro and in vivo5, 6, 7, 8, 9 and is currently under clinical investigation for the treatment of melanoma10 and hepatocellular carcinoma (HCC).11 These carcinomas are auxotrophic for arginine, mainly because of the absence of arginine endogenous synthetical pathway. However, there are no reports about the efficiency in the therapy of breast cancer by rhArg through depletion of arginine.An increasing number of studies have shown that autophagy is stimulated in response to external stressors (such as starvation and oxidative stress) and internal needs (for example, removal of aggregate-prone proteins).12 Autophagy is an evolutionarily conserved catabolic process responsible for the routine degradation of bulk superfluous or dysfunctional proteins and organelles.13 Autophagy serves as a protective role in response to a majority of anticancer drugs and in the pathogenesis process.14, 15 Not surprisingly, the relationship between autophagy and apoptosis, both genetically regulated and evolutionarily conserved, is complex, and appears to be related to cellular contexts.16 Meanwhile, mounting evidence accumulated has revealed that autophagy stimulation and reactive oxygen species (ROS) are closely linked in response to cancer therapeutics.17, 18 Notably, the essential contribution of mitochondrially generated ROS in the modulation of autophagy during starvation has been highlighted.In this study, we investigated whether rhArg might be a potential therapy for TNBC. We reported for the first time that rhArg-induced cell growth inhibition and caspase 3-independent apoptosis in MDA-MB-231 cells. Also, we found that rhArg could induce autophagy in MDA-MB-231 cells in a dose- and time-dependent manner. Interestingly, blocking autophagy potentiated cytotoxicity induced by rhArg, indicating that autophagy had a cytoprotective role in the treatment of rhArg. Meanwhile, ROS was involved in the autophagy and cell growth inhibition induced by rhArg. With our findings mentioned above, rhArg has shown potential to be a promising therapy for TNBC. Furthermore, the combination with autophagy-targeting drugs displayed multipronged treatment for breast cancer therapy.  相似文献   

16.
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.  相似文献   

17.
18.
Doxorubicin, as a widely used chemotherapeutic, always causes multidrug resistance in human cancer cells. To circumvent drug resistance, we developed a novel formulation where doxorubicin hydrochloride (DOX) and chloroquine phosphate (CQ) were simultaneously loaded into liposomes by a pH-gradient method where CQ played the role of a chemical sensitizer. The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and CQ coencapsulated liposomes (DCL). The resultant DCLs achieved the high encapsulation efficiency of both drugs over 90%. Further, DCLs significantly displayed resistance reversal action on a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR) through the cooperation of CQ with DOX. The reversal fold of DCL with the DOX/CQ/soybean phosphatidylcholine weight ratio of 0.5:1:50 was 5.7, compared to free DOX. These results demonstrate that DCL is a promising formulation for the treatment of DOX-resistant breast cancer.  相似文献   

19.
Worldwide, breast cancer is the most frequently diagnosed life-threatening cancer in women and the most important cause of cancer-related deaths among women. This disease is on the rise in Turkey. Metabolic syndrome is a cluster of metabolic disturbances including insulin resistance, dyslipidemia, hypertension, abdominal obesity and high blood sugar. Several studies have examined the association of the individual components of the metabolic syndrome with breast cancer. More recent studies have shown it to be an independent risk factor for breast cancer. It has also been associated with poorer prognosis, increased incidence, a more aggressive tumor phenotype. Basic research studies are now in progress to illuminate the molecular pathways and mechanisms that are behind this correlation. Given the fact that all of the components of metabolic syndrome are modifiable risk factors, preventive measures must be established to improve the outcome of breast cancer patients. In this review we set the background by taking into account previous studies which have identified the components of metabolic syndrome individually as breast cancer risk factors. Then we present the latest findings which elaborate possible explanations regarding how metabolic syndrome as a single entity may affect breast cancer risk.  相似文献   

20.
Starting with 5-iodo-2'-deoxyuridine, a series of 5-alkynyl-2'-deoxyuridines (with n-propyl, cyclopropyl, 1-hydroxycyclohexyl, p-tolyl, p-tert-butylphenyl, p-pentylphenyl, and trimethylsilyl alkyne substituents) have been synthesized via the palladium-catalyzed (Sonogashira) coupling reaction followed by a simplified isolation protocol (76-94% yield). The cytotoxic activity of modified nucleosides against MCF-7 and MDA-MB-231 human breast cancer cells has been determined in vitro. 5-Ethynyl-2'-deoxyuridine, the only nucleoside in the series containing a terminal acetylene, is the most potent inhibitor with IC(50) (microM) 0.4+/-0.3 for MCF-7 and 4.4+/-0.4 for MDA-MB-231.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号